Graph Data Augmentation for Graph Convolutional Networks Learning in Robust Mental Disorder Prediction with Limited and Noisy Labels

计算机科学 图形 人工智能 机器学习 理论计算机科学
作者
Jiacheng Pan,Yihong Dong,Daogen Jiang,Longyang Wang
出处
期刊:Journal of Computational Biology [Mary Ann Liebert]
卷期号:32 (12): 1171-1189
标识
DOI:10.1177/15578666251371079
摘要

Graph neural networks have shown impressive performance in a variety of biomedical application tasks due to their powerful graph representation capabilities. Although GNN has achieved great success, the data noise and data scarcity problems commonly faced in real psychiatric disease prediction scenarios may affect the training and prediction of graph learning models. At present, there is no relevant work to obtain a reasonable solution. Data augmentation, which allows limited data to produce value equivalent to more data without substantially increasing the data, is considered a practical approach to addressing the problem of noisy data and data scarcity. In this work, we propose a method based on graph data augmentation for solving the problem of noisy data and data scarcity in mental illness prediction. To mitigate the negative effects of label noise, we use edge predictors to optimize the graph topology, enhance links to nodes with high similarity, remove erroneous noisy edges, and enhance the model robustness by adding adversarial perturbations in the feature space. In addition, a confident self-checking mechanism allows accurate pseudolabeling to be obtained, providing more supervision for the model training phase and further reducing the effect of label noise. Extensive experiments on two multimodal real mental illness datasets show that the proposed approach has better performance. Sufficient ablation experimental studies were conducted to assess the effectiveness of each component. The experimental results validate the effectiveness and scalability of our framework for population-based disease prediction, even under challenging conditions of data noise and sparsity. The implementation code is publicly available at: https://github.com/jiachengpan98/GDA-GCN.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小林发布了新的文献求助10
刚刚
刚刚
量子星尘发布了新的文献求助10
刚刚
www完成签到,获得积分10
刚刚
1秒前
1秒前
2秒前
攸宁完成签到,获得积分10
2秒前
2秒前
慕青应助烂漫笑晴采纳,获得10
3秒前
ichi完成签到,获得积分10
3秒前
池鱼思故渊关注了科研通微信公众号
3秒前
小蘑菇应助jl9888采纳,获得30
4秒前
zzdd发布了新的文献求助10
4秒前
YAN发布了新的文献求助10
4秒前
冷静绫完成签到,获得积分10
5秒前
希望天下0贩的0应助YaKE采纳,获得10
5秒前
妙妙宝贝完成签到 ,获得积分10
5秒前
6秒前
jwb711发布了新的文献求助10
6秒前
唐糖完成签到,获得积分10
6秒前
科研通AI6应助11采纳,获得30
7秒前
传奇3应助孔雀吃披萨采纳,获得10
7秒前
圈圈发布了新的文献求助10
7秒前
希望天下0贩的0应助文车采纳,获得10
7秒前
Hanbo_YANG完成签到 ,获得积分10
7秒前
大模型应助薛亚妮采纳,获得10
7秒前
三七发布了新的文献求助20
7秒前
8秒前
潇湘完成签到,获得积分20
9秒前
9秒前
myh完成签到,获得积分10
9秒前
鲨鱼辣椒发布了新的文献求助10
9秒前
小蘑菇应助zzdd采纳,获得10
9秒前
烟花应助秋不言采纳,获得30
10秒前
李健的小迷弟应助薰衣草采纳,获得10
10秒前
慕青应助稳重中心采纳,获得10
10秒前
冷静绫发布了新的文献求助10
11秒前
文艺如凡完成签到,获得积分10
11秒前
JamesPei应助iaskwho采纳,获得10
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
Encyclopedia of Agriculture and Food Systems Third Edition 1500
以液相層析串聯質譜法分析糖漿產品中活性雙羰基化合物 / 吳瑋元[撰] = Analysis of reactive dicarbonyl species in syrup products by LC-MS/MS / Wei-Yuan Wu 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 600
Pediatric Nutrition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5546362
求助须知:如何正确求助?哪些是违规求助? 4632240
关于积分的说明 14625801
捐赠科研通 4573926
什么是DOI,文献DOI怎么找? 2507874
邀请新用户注册赠送积分活动 1484511
关于科研通互助平台的介绍 1455714