已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Further evidence of depressive symptomatology profile predicting treatment outcome

精神科 心理学 结果(博弈论) 萧条(经济学) 抑郁症状 临床心理学 医学 焦虑 数学 宏观经济学 数理经济学 经济
作者
Maria Antonietta De Luca,Antonina Luca,Alessandro Serretti
出处
期刊:International Journal of Psychiatry in Clinical Practice [Taylor & Francis]
卷期号:: 1-8
标识
DOI:10.1080/13651501.2025.2519530
摘要

Non-response to treatment is a major problem in Major Depressive Disorder. The identification of predictors of poor outcome could improve treatment strategies. Overall baseline severity is one of the strongest predictors, but the specific symptoms profile is poorly investigated. Baseline symptoms scores of 1533 depressed patients were assessed through the 30-item Inventory for Depressive Symptomatology, Clinician-rated (IDS-C30), as part of the Sequenced treatment alternatives to relieve depression (STAR*D) trial. Treatment outcomes were assessed after treatment with citalopram. We tested IDS-C30 individual items associated with non-response in the whole sample and sex-stratified subgroups. Sadness, sleep disturbances and lassitude were predictors of outcome in the whole sample. Females showed higher scores at many somatic domains (i.e., aches and pain), the latter relating to poor outcome. Anhedonic features, albeit with sex-specific differences, were associated with poor outcome across all study groups, along with depression severity and suicidal thoughts. Our findings further refine the observation that specific baseline symptomatology profiles are related to poor response in depressed individuals. This finding may inform at a clinical level for personalised treatment. The sex-specific differences suggest a thorough assessment of depressive features at the very first approach with the depressed patient. Sadness, sleep disturbances and reduced energy are strong predictors of poor outcome in depressed individualsSomatic complaints may be stronger predictors among females compared to malesAnhedonic features relate to non-response.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
orixero应助科研通管家采纳,获得30
1秒前
1秒前
1秒前
wanci应助科研通管家采纳,获得10
1秒前
李健应助科研通管家采纳,获得10
1秒前
小伍完成签到,获得积分10
1秒前
乐乐应助科研通管家采纳,获得10
1秒前
1秒前
Ak完成签到,获得积分0
1秒前
酷波er应助科研通管家采纳,获得10
1秒前
寡妇哥完成签到 ,获得积分10
3秒前
量子星尘发布了新的文献求助10
4秒前
ding应助挣钱养刺猬采纳,获得10
5秒前
Felicity完成签到 ,获得积分10
5秒前
puhong zhang完成签到,获得积分10
9秒前
224完成签到 ,获得积分10
11秒前
李健的小迷弟应助xiaoxiao采纳,获得10
13秒前
张三完成签到,获得积分10
17秒前
生物小白完成签到,获得积分10
19秒前
艺术家完成签到 ,获得积分10
21秒前
少管我完成签到,获得积分10
26秒前
28秒前
狂野乌冬面完成签到 ,获得积分10
30秒前
奋斗的小笼包完成签到 ,获得积分10
31秒前
aaa完成签到,获得积分10
32秒前
32秒前
机智弼发布了新的文献求助10
32秒前
乳酸菌小面包完成签到,获得积分10
35秒前
Skywalker完成签到,获得积分10
37秒前
番茄黄瓜芝士片完成签到 ,获得积分10
41秒前
李子涵完成签到,获得积分10
42秒前
LJL完成签到 ,获得积分10
48秒前
48秒前
昵称完成签到,获得积分10
48秒前
blueskyzhi完成签到,获得积分10
50秒前
空白格完成签到 ,获得积分10
50秒前
豆豆发布了新的文献求助10
52秒前
北觅完成签到 ,获得积分10
53秒前
55秒前
端庄亦巧完成签到 ,获得积分10
55秒前
高分求助中
(禁止应助)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Semantics for Latin: An Introduction 1099
Biology of the Indian Stingless Bee: Tetragonula iridipennis Smith 1000
War and Peace in the Borderlands of Myanmar: The Kachin Ceasefire, 1994-2011 800
Robot-supported joining of reinforcement textiles with one-sided sewing heads 740
2024-2030年中国石英材料行业市场竞争现状及未来趋势研判报告 500
镇江南郊八公洞林区鸟类生态位研究 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4142318
求助须知:如何正确求助?哪些是违规求助? 3678622
关于积分的说明 11627521
捐赠科研通 3372324
什么是DOI,文献DOI怎么找? 1852326
邀请新用户注册赠送积分活动 915133
科研通“疑难数据库(出版商)”最低求助积分说明 829641