An advanced data-driven spatiotemporal fusion discrete grey forecasting model for CO2 emissions prediction in urban agglomerations

城市群 融合 传感器融合 回溯 环境科学 计算机科学 气象学 计量经济学 地理 人工智能 经济地理学 经济 哲学 生物 持续性 语言学 生态学
作者
Yuanping Ding,Yaoguo Dang,Yingjie Yang,Junjie Wang,Shan Huang
出处
期刊:Grey systems [Emerald (MCB UP)]
卷期号:15 (4): 816-859
标识
DOI:10.1108/gs-03-2025-0034
摘要

Purpose Accurate predicting CO2 emissions from urban agglomerations is vital for optimizing CO2 emissions reduction policies and energy structure. Existing grey models typically treat CO2 emissions units as independent units, extracting features in temporal dimension for forecasting. However, they neglect features in spatial dimension that exist among CO2 emissions units in urban agglomerations. Therefore, we will formulate an advanced spatiotemporal fusion discrete grey forecasting model in this paper. Design/methodology/approach Firstly, an asymmetric time-varying spatial weight matrix is constructed using a combination of data-driven and prior knowledge to quantify the asymmetric time-varying spatial correlation intensity between spatial units. Subsequently, a spatial correlation term, in combination with the proposed matrix, is designed to capture the correlation feature among spatial units. Then, a nonlinear time term driven by a power function is established to model the differential nonlinear trend of each spatial unit over time. Through incorporating the spatial correlation term and the nonlinear time term into the grey difference equation, a spatiotemporal fusion discrete grey prediction model (STFDGM(1,1,m)) is developed. Further, particle swarm optimization (PSO) is employed as an effective tool for nonlinear parameters optimization, thereby enhancing the model adaptability to diverse datasets. Findings A case study about CO2 emissions forecasts in Yangtze River Delta (YRD) demonstrate that the R2 and MAPE of the STFDGM(1,1,m) are enhanced by 8.53%–147.73% and decreased by 48.40%–97.40%, respectively, relative to nine comparison models of three categories and surpass the comparison models in terms of the tightest limit of agreement. Furthermore, Monte Carlo simulation experiment, ablation experiment and robustness test are conducted to verify the effectiveness of PSO in solving nonlinear parameters, the necessity of model optimization and the model stability, respectively. Originality/value In light of the spatial correlation feature and nonlinear time development trend amongst CO2 emissions of urban agglomerations, as well as the asymmetric and time-varying characteristics of the intensity of the spatial correlation, the STFDGM(1,1,m) model is proposed by integrating an asymmetric time-varying spatial weight matrix, spatial correlation term and nonlinear time term. This model provides a valuable tool for policymakers and researchers to accurately forecast CO2 emissions and develop effective carbon reduction strategies in urban agglomerations.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI6.1应助111采纳,获得10
1秒前
1秒前
孙同学发布了新的文献求助10
1秒前
isabellae完成签到,获得积分20
2秒前
3秒前
科研通AI6.1应助QQ采纳,获得10
3秒前
jiaojiao完成签到 ,获得积分10
5秒前
Kaslana672完成签到,获得积分10
5秒前
辛勤寻凝应助万里海天采纳,获得10
6秒前
上官若男应助熊大头采纳,获得10
6秒前
量子星尘发布了新的文献求助10
6秒前
ding应助雨上悲采纳,获得10
7秒前
害羞的强炫完成签到,获得积分10
8秒前
isabellae关注了科研通微信公众号
9秒前
9秒前
10秒前
明理夏波完成签到 ,获得积分10
11秒前
赘婿应助科研通管家采纳,获得10
13秒前
赘婿应助科研通管家采纳,获得10
13秒前
wanci应助科研通管家采纳,获得10
13秒前
BowieHuang应助科研通管家采纳,获得10
13秒前
wanci应助科研通管家采纳,获得10
13秒前
13秒前
13秒前
充电宝应助科研通管家采纳,获得10
13秒前
充电宝应助科研通管家采纳,获得10
13秒前
共享精神应助科研通管家采纳,获得10
13秒前
共享精神应助科研通管家采纳,获得10
13秒前
顾矜应助科研通管家采纳,获得10
13秒前
顾矜应助科研通管家采纳,获得10
13秒前
Orange应助科研通管家采纳,获得10
13秒前
Orange应助科研通管家采纳,获得10
13秒前
13秒前
13秒前
传奇3应助科研通管家采纳,获得10
13秒前
13秒前
13秒前
13秒前
JamesPei应助科研通管家采纳,获得10
13秒前
JamesPei应助科研通管家采纳,获得10
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
从k到英国情人 1500
Ägyptische Geschichte der 21.–30. Dynastie 1100
„Semitische Wissenschaften“? 1100
Real World Research, 5th Edition 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5736544
求助须知:如何正确求助?哪些是违规求助? 5366624
关于积分的说明 15333378
捐赠科研通 4880340
什么是DOI,文献DOI怎么找? 2622818
邀请新用户注册赠送积分活动 1571719
关于科研通互助平台的介绍 1528544