Ultrasound-based deep learning radiomics nomogram for risk stratification of testicular masses: a two-center study

列线图 医学 接收机工作特性 逻辑回归 单变量 超声波 放射科 单变量分析 机器学习 多元分析 多元统计 内科学 计算机科学
作者
Fuxiang Fang,Yan Sun,Hualin Huang,Yueting Huang,Xing Luo,Wei Yao,Liyan Wei,Guiwu Xie,Yongxian Wu,Zheng Lu,Jiawen Zhao,Chengyang Li
出处
期刊:Journal of Cancer Research and Clinical Oncology [Springer Science+Business Media]
卷期号:150 (1) 被引量:1
标识
DOI:10.1007/s00432-023-05549-6
摘要

Abstract Objective To develop an ultrasound-driven clinical deep learning radiomics (CDLR) model for stratifying the risk of testicular masses, aiming to guide individualized treatment and minimize unnecessary procedures. Methods We retrospectively analyzed 275 patients with confirmed testicular lesions (January 2018 to April 2023) from two hospitals, split into training (158 cases), validation (68 cases), and external test cohorts (49 cases). Radiomics and deep learning (DL) features were extracted from preoperative ultrasound images. Following feature selection, we utilized logistic regression (LR) to establish a deep learning radiomics (DLR) model and subsequently derived its signature. Clinical data underwent univariate and multivariate LR analyses, forming the "clinic signature." By integrating the DLR and clinic signatures using multivariable LR, we formulated the CDLR nomogram for testicular mass risk stratification. The model’s efficacy was gauged using the area under the receiver operating characteristic curve (AUC), while its clinical utility was appraised with decision curve analysis(DCA). Additionally, we compared these models with two radiologists' assessments (5–8 years of practice). Results The CDLR nomogram showcased exceptional precision in distinguishing testicular tumors from non-tumorous lesions, registering AUCs of 0.909 (internal validation) and 0.835 (external validation). It also excelled in discerning malignant from benign testicular masses, posting AUCs of 0.851 (internal validation) and 0.834 (external validation). Notably, CDLR surpassed the clinical model, standalone DLR, and the evaluations of the two radiologists. Conclusion The CDLR nomogram offers a reliable tool for differentiating risks associated with testicular masses. It augments radiological diagnoses, facilitates personalized treatment approaches, and curtails unwarranted medical procedures.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
wlz完成签到,获得积分10
刚刚
落花发布了新的文献求助10
刚刚
3秒前
3秒前
爆米花应助费老三采纳,获得10
3秒前
5秒前
漂亮的盼波完成签到 ,获得积分10
5秒前
mgg完成签到,获得积分10
6秒前
forever完成签到,获得积分10
6秒前
6秒前
zx发布了新的文献求助20
8秒前
8秒前
8秒前
11秒前
ROSE发布了新的文献求助10
11秒前
Metx完成签到 ,获得积分10
12秒前
W哇发布了新的文献求助10
12秒前
科目三应助水水采纳,获得10
13秒前
chen完成签到,获得积分10
13秒前
ssc完成签到,获得积分10
14秒前
Thomas完成签到,获得积分10
14秒前
18秒前
W哇完成签到,获得积分10
19秒前
niulugai完成签到,获得积分10
21秒前
21秒前
22秒前
CNAxiaozhu7完成签到,获得积分10
22秒前
冷艳薯片完成签到,获得积分10
22秒前
龙2024完成签到,获得积分10
23秒前
温暖的涵易完成签到,获得积分0
23秒前
科研通AI5应助123lx采纳,获得10
25秒前
费老三发布了新的文献求助10
25秒前
水水发布了新的文献求助10
26秒前
doin发布了新的文献求助10
27秒前
zhul完成签到,获得积分10
28秒前
ROSE完成签到,获得积分10
31秒前
32秒前
安静无招完成签到 ,获得积分10
34秒前
35秒前
Jasper应助六月歌者采纳,获得10
35秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Mobilization, center-periphery structures and nation-building 600
Technologies supporting mass customization of apparel: A pilot project 450
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3793328
求助须知:如何正确求助?哪些是违规求助? 3338065
关于积分的说明 10288573
捐赠科研通 3054717
什么是DOI,文献DOI怎么找? 1676128
邀请新用户注册赠送积分活动 804144
科研通“疑难数据库(出版商)”最低求助积分说明 761757