Prediction of Compressive Strength of Geopolymer Concrete Landscape Design: Application of the Novel Hybrid RF–GWO–XGBoost Algorithm

抗压强度 地聚合物水泥 结构工程 聚合物 材料科学 算法 计算机科学 工程类 复合材料
作者
Jun Zhang,Ranran Wang,Yijun Lü,Jiandong Huang
出处
期刊:Buildings [MDPI AG]
卷期号:14 (3): 591-591 被引量:43
标识
DOI:10.3390/buildings14030591
摘要

Landscape geopolymer concrete (GePoCo) with environmentally friendly production methods not only has a stable structure but can also effectively reduce environmental damage. Nevertheless, GePoCo poses challenges with its intricate cementitious matrix and a vague mix design, where the components and their relative amounts can influence the compressive strength. In response to these challenges, the application of accurate and applicable soft computing techniques becomes imperative for predicting the strength of such a composite cementitious matrix. This research aimed to predict the compressive strength of GePoCo using waste resources through a novel ensemble ML algorithm. The dataset comprised 156 statistical samples, and 15 variables were selected for prediction. The model employed a combination of the RF, GWO algorithm, and XGBoost. A stacking strategy was implemented by developing multiple RF models with different hyperparameters, combining their outcome predictions into a new dataset, and subsequently developing the XGBoost model, termed the RF–XGBoost model. To enhance accuracy and reduce errors, the GWO algorithm optimized the hyperparameters of the RF–XGBoost model, resulting in the RF–GWO–XGBoost model. This proposed model was compared with stand-alone RF and XGBoost models, and a hybrid GWO–XGBoost system. The results demonstrated significant performance improvement using the proposed strategies, particularly with the assistance of the GWO algorithm. The RF–GWO–XGBoost model exhibited better performance and effectiveness, with an RMSE of 1.712 and 3.485, and R2 of 0.983 and 0.981. In contrast, stand-alone models (RF and XGBoost) and the hybrid model of GWO–XGBoost demonstrated lower performance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Yung关注了科研通微信公众号
2秒前
小二郎应助nene采纳,获得10
3秒前
4秒前
DEUX完成签到,获得积分10
5秒前
鲨鱼小乐完成签到,获得积分10
8秒前
8秒前
9秒前
ivying0209发布了新的文献求助10
10秒前
10秒前
12秒前
烟花应助冷静的灵采纳,获得10
12秒前
13秒前
bkagyin应助musicyy222采纳,获得10
13秒前
Nichols完成签到,获得积分10
15秒前
李天王发布了新的文献求助10
15秒前
17秒前
wxyshare举报割牙龈肉求助涉嫌违规
17秒前
vegetable发布了新的文献求助10
17秒前
nene发布了新的文献求助10
20秒前
21秒前
ding应助ivying0209采纳,获得10
22秒前
22秒前
汉堡包应助夏明明采纳,获得10
23秒前
23秒前
机智的小懒虫完成签到 ,获得积分10
24秒前
musicyy222发布了新的文献求助10
25秒前
26秒前
嘿嘿发布了新的文献求助10
26秒前
28秒前
破心完成签到,获得积分10
29秒前
乐乐应助zzz2193采纳,获得10
31秒前
31秒前
33秒前
无敌小天天完成签到 ,获得积分10
34秒前
童童发布了新的文献求助10
39秒前
zm完成签到,获得积分10
41秒前
又绿发布了新的文献求助30
42秒前
YifanWang应助一个小胖子采纳,获得10
42秒前
43秒前
43秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 620
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5560249
求助须知:如何正确求助?哪些是违规求助? 4645431
关于积分的说明 14675179
捐赠科研通 4586582
什么是DOI,文献DOI怎么找? 2516468
邀请新用户注册赠送积分活动 1490105
关于科研通互助平台的介绍 1460915