亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Dual-stream feature fusion network for person re-identification

计算机科学 判别式 人工智能 RGB颜色模型 模式识别(心理学) 联营 特征(语言学) 灰度 嵌入 计算机视觉 鉴定(生物学) 图像(数学) 哲学 语言学 植物 生物
作者
Wenbin Zhang,Zhaoyang Li,Haishun Du,Jiangang Tong,Zhihua Liu
出处
期刊:Engineering Applications of Artificial Intelligence [Elsevier BV]
卷期号:131: 107888-107888 被引量:5
标识
DOI:10.1016/j.engappai.2024.107888
摘要

Person re-identification (Re-ID) has made significant progress in recent years. However, it still faces numerous challenges in real scenarios. Although researchers have proposed various solutions, the issue of similar clothing colors remains an obstacle in improving the performance of person re-identification. To solve this issue, we propose a dual-stream feature fusion network (DSFF-Net) to extract discriminative features from pedestrian images in two color spaces. Specifically, a dual-stream network is designed to extract RGB global features, grayscale global features, and local features of pedestrian images to increase the richness of pedestrian representations. A channel attention module is designed to direct the network to focus on the salient features of pedestrians. An embedding mixed pooling is designed, which integrates the outputs of global average pooling (GAP) and global max pooling (GMP) to obtain more discriminative global features. Besides, it can also remove redundant information and increase the discrimination of pedestrian representations. A fine-grained local feature embedding fusion operation is designed to obtain more discriminative local features by embedding and fusing fine-grained local features of RGB and grayscale pedestrian images. Since the final pedestrian representation fuses both global features and fine-grained discriminative features in RGB and grayscale spaces, DSFF-Net increases the discriminative capability and richness of pedestrian representations. Moreover, we conduct extensive experiments on three datasets, Market-1501 DukeMTMC-Reid, and CUHK03, and our method achieves the Rank-1/mAP of 95.9%/89.1%, 89.0%/79.2%, and 81.2%/78.7%, respectively. Experimental results show that the performance of DSFF-Net is better than those of most of the state-of-the-art person Re-ID methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
3秒前
8秒前
还单身的储完成签到,获得积分20
16秒前
24秒前
51秒前
云是完成签到 ,获得积分10
1分钟前
诚心的水杯完成签到 ,获得积分10
1分钟前
bc应助123采纳,获得30
1分钟前
Chloe完成签到,获得积分10
1分钟前
Noob_saibot完成签到,获得积分10
1分钟前
ldjldj_2004完成签到 ,获得积分10
4分钟前
苹果发夹完成签到 ,获得积分10
4分钟前
DrCuiTianjin完成签到 ,获得积分10
5分钟前
大意的皓轩完成签到 ,获得积分10
5分钟前
6分钟前
苏雅霏完成签到 ,获得积分10
6分钟前
江流有声发布了新的文献求助10
6分钟前
orixero应助AnBiaccepted采纳,获得10
7分钟前
7分钟前
AnBiaccepted发布了新的文献求助10
7分钟前
moodlunatic完成签到,获得积分10
8分钟前
9分钟前
10分钟前
夜乡晨完成签到 ,获得积分10
11分钟前
一个小胖子完成签到,获得积分10
11分钟前
光合作用完成签到,获得积分10
12分钟前
12分钟前
糊涂的青烟完成签到 ,获得积分10
13分钟前
ycw7777完成签到,获得积分10
13分钟前
天天好心覃完成签到 ,获得积分10
13分钟前
13分钟前
柔弱烨霖发布了新的文献求助10
14分钟前
科研通AI5应助柔弱烨霖采纳,获得10
14分钟前
优秀的dd完成签到 ,获得积分10
14分钟前
平淡的中心完成签到,获得积分10
15分钟前
15分钟前
15分钟前
taster发布了新的文献求助10
15分钟前
taster完成签到,获得积分10
15分钟前
san行完成签到,获得积分10
16分钟前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
Walking a Tightrope: Memories of Wu Jieping, Personal Physician to China's Leaders 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3798503
求助须知:如何正确求助?哪些是违规求助? 3344017
关于积分的说明 10318301
捐赠科研通 3060565
什么是DOI,文献DOI怎么找? 1679670
邀请新用户注册赠送积分活动 806731
科研通“疑难数据库(出版商)”最低求助积分说明 763323