已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Three-dimensional integral imaging-based image descattering and recovery using physics informed unsupervised CycleGAN

图像复原 计算机科学 人工智能 图像形成 水下 图像(数学) 深度学习 计算机视觉 降级(电信) 积分成像 图像处理 电信 海洋学 地质学
作者
Gokul Krishnan,saurabh goswami,Rakesh Joshi,Bahram Javidi
出处
期刊:Optics Express [Optica Publishing Group]
卷期号:32 (2): 1825-1825 被引量:3
标识
DOI:10.1364/oe.510830
摘要

Image restoration and denoising has been a challenging problem in optics and computer vision. There has been active research in the optics and imaging communities to develop a robust, data-efficient system for image restoration tasks. Recently, physics-informed deep learning has received wide interest in scientific problems. In this paper, we introduce a three-dimensional integral imaging-based physics-informed unsupervised CycleGAN algorithm for underwater image descattering and recovery using physics-informed CycleGAN (Generative Adversarial Network). The system consists of a forward and backward pass. The base architecture consists of an encoder and a decoder. The encoder takes the clean image along with the depth map and the degradation parameters to produce the degraded image. The decoder takes the degraded image generated by the encoder along with the depth map and produces the clean image along with the degradation parameters. In order to provide physical significance for the input degradation parameter w.r.t a physical model for the degradation, we also incorporated the physical model into the loss function. The proposed model has been assessed under the dataset curated through underwater experiments at various levels of turbidity. In addition to recovering the original image from the degraded image, the proposed algorithm also helps to model the distribution under which the degraded images have been sampled. Furthermore, the proposed three-dimensional Integral Imaging approach is compared with the traditional deep learning-based approach and 2D imaging approach under turbid and partially occluded environments. The results suggest the proposed approach is promising, especially under the above experimental conditions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小星星完成签到,获得积分10
1秒前
星辰大海应助李李李采纳,获得10
6秒前
梯坎完成签到 ,获得积分10
7秒前
luanzhaohui完成签到,获得积分10
12秒前
科研通AI2S应助Rosin采纳,获得10
12秒前
12秒前
杨东旭关注了科研通微信公众号
12秒前
正直的帅哥完成签到,获得积分10
14秒前
15秒前
犹豫曲奇完成签到 ,获得积分10
15秒前
希望天下0贩的0应助XP采纳,获得10
16秒前
今后应助年轻砖头采纳,获得10
18秒前
朱佳宁完成签到 ,获得积分10
19秒前
海陵吹风鸡完成签到,获得积分10
19秒前
20秒前
20秒前
赵坤煊发布了新的文献求助10
23秒前
沉静绮彤发布了新的文献求助10
23秒前
梨花雨凉1993完成签到,获得积分10
24秒前
26秒前
27秒前
忧心的闭月完成签到,获得积分10
27秒前
996755发布了新的文献求助10
29秒前
32秒前
XP发布了新的文献求助10
32秒前
33秒前
33秒前
35秒前
传奇3应助雯雯采纳,获得10
35秒前
化学之星完成签到,获得积分10
37秒前
大橘发布了新的文献求助10
37秒前
李李李发布了新的文献求助10
38秒前
陈秋红发布了新的文献求助10
39秒前
斯文静竹发布了新的文献求助10
41秒前
研友_LMBPXn完成签到,获得积分10
42秒前
年轻砖头发布了新的文献求助10
42秒前
万能图书馆应助王金娥采纳,获得10
43秒前
44秒前
duoduo关注了科研通微信公众号
44秒前
44秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
One Man Talking: Selected Essays of Shao Xunmei, 1929–1939 (PDF!) 1000
Technologies supporting mass customization of apparel: A pilot project 450
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
Walking a Tightrope: Memories of Wu Jieping, Personal Physician to China's Leaders 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3787853
求助须知:如何正确求助?哪些是违规求助? 3333506
关于积分的说明 10262045
捐赠科研通 3049268
什么是DOI,文献DOI怎么找? 1673469
邀请新用户注册赠送积分活动 801965
科研通“疑难数据库(出版商)”最低求助积分说明 760440