亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Paying Attention to Mindset Measures: A Necessary Step to Move Beyond Mindset Controversies

心态 政治学 工程伦理学 计算机科学 工程类 人工智能
作者
Léa Tân Combette,Deborah Kelemen
标识
DOI:10.31219/osf.io/yr85t
摘要

Since the 1970s, intelligence growth mindset and related interventions have garnered significant attention, particularly in terms of their impact on motivation and learning. However, controversies have arisen since 2017, with reviews highlighting the substantial variability in the efficacy of mindset interventions. In response, significant attention has been paid to social contextual factors (e.g. SES, teachers’ mindset) that might underlie the variability in effects. However, in this paper we argue that an even more fundamental factor has been overlooked: the way mindsets are assessed. To illustrate our point, we focus on three pivotal areas in which mindset measurement can differ across studies (measuring fixed vs. fixed+growth mindset; domain-general vs. domain-specific abilities; and self-theories vs. other-theories). Drawing on original recommendations from Carol Dweck's seminal 1999 work and ones derived from more recent research, we make a set of recommendations about best practices. Using data from a preregistered rapid systematic review of mindset research published since 2017, we then examine the degree to which measurement approaches have varied and the degree to which these best practices are already in common use. Our findings compellingly demonstrate that discrepancies and incongruities in the mindset literature are at least partially attributable to variabilities in how researchers measure mindsets. There is also a clear need for the adoption of a set of best practices so that firmer conclusions about mindset effects can be drawn from future research.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
1秒前
1秒前
1秒前
1秒前
忧郁的灵枫发布了新的文献求助100
1秒前
1秒前
1秒前
1秒前
忧郁的灵枫发布了新的文献求助150
2秒前
2秒前
2秒前
2秒前
2秒前
2秒前
2秒前
2秒前
3秒前
3秒前
懒骨头兄发布了新的文献求助10
3秒前
3秒前
3秒前
李彦完成签到,获得积分10
3秒前
5秒前
5秒前
7秒前
shimly0101xx发布了新的文献求助10
10秒前
10秒前
外向青筠发布了新的文献求助100
12秒前
闪闪发布了新的文献求助10
12秒前
杨茜然完成签到 ,获得积分10
12秒前
16秒前
zwx发布了新的文献求助10
17秒前
认真土豆关注了科研通微信公众号
23秒前
李健的粉丝团团长应助zwx采纳,获得10
24秒前
29秒前
PYX完成签到 ,获得积分10
29秒前
ding应助霸气的汉堡采纳,获得10
35秒前
李雅琪发布了新的文献求助30
36秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 880
花の香りの秘密―遺伝子情報から機能性まで 800
Stop Talking About Wellbeing: A Pragmatic Approach to Teacher Workload 500
Terminologia Embryologica 500
Silicon in Organic, Organometallic, and Polymer Chemistry 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5616992
求助须知:如何正确求助?哪些是违规求助? 4701391
关于积分的说明 14913439
捐赠科研通 4747881
什么是DOI,文献DOI怎么找? 2549221
邀请新用户注册赠送积分活动 1512299
关于科研通互助平台的介绍 1474052