已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

A Communication-Efficient Hierarchical Federated Learning Framework via Shaping Data Distribution at Edge

计算机科学 GSM演进的增强数据速率 边缘计算 分布式计算 云计算 节点(物理) 边缘设备 原始数据 人工智能 结构工程 工程类 程序设计语言 操作系统
作者
Yongheng Deng,Feng Lyu,Tengxi Xia,Yuezhi Zhou,Yaoxue Zhang,Ju Ren,Yuanyuan Yang
出处
期刊:IEEE ACM Transactions on Networking [Institute of Electrical and Electronics Engineers]
卷期号:32 (3): 2600-2615 被引量:6
标识
DOI:10.1109/tnet.2024.3363916
摘要

Federated learning (FL) enables collaborative model training over distributed computing nodes without sharing their privacy-sensitive raw data. However, in FL, iterative exchanges of model updates between distributed nodes and the cloud server can result in significant communication cost, especially when the data distributions at distributed nodes are imbalanced with requiring more rounds of iterations. In this paper, with our in-depth empirical studies, we disclose that extensive cloud aggregations can be avoided without compromising the learning accuracy if frequent aggregations can be enabled at edge network. To this end, we shed light on the hierarchical federated learning (HFL) framework, where a subset of distributed nodes can play as edge aggregators to support edge aggregations. Under the HFL framework, we formulate a communication cost minimization (CCM) problem to minimize the total communication cost required for model learning with a target accuracy by making decisions on edge aggragator selection and node-edge associations. Inspired by our data-driven insights that the potential of HFL lies in the data distribution at edge aggregators, we propose ShapeFL, i.e., SHaping dAta distRibution at Edge, to transform and solve the CCM problem. In ShapeFL, we divide the original problem into two sub-problems to minimize the per-round communication cost and maximize the data distribution diversity of edge aggregator data, respectively, and devise two light-weight algorithms to solve them accordingly. Extensive experiments are carried out based on several opened datasets and real-world network topologies, and the results demonstrate the efficacy of ShapeFL in terms of both learning accuracy and communication efficiency.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
自觉的雅柏完成签到,获得积分10
1秒前
脑洞疼应助科研通管家采纳,获得10
4秒前
小蘑菇应助科研通管家采纳,获得10
4秒前
YifanWang应助科研通管家采纳,获得10
4秒前
4秒前
自由思真完成签到,获得积分10
11秒前
开心每一天完成签到 ,获得积分10
15秒前
皮蛋robin汤完成签到 ,获得积分10
17秒前
FFFFF完成签到 ,获得积分10
20秒前
21秒前
斯文败类应助dwadwa采纳,获得10
25秒前
喵喵完成签到 ,获得积分10
25秒前
郗妫完成签到,获得积分10
26秒前
27秒前
ShiRz发布了新的文献求助10
27秒前
27秒前
摸仙王子完成签到,获得积分10
31秒前
31秒前
Stata@R发布了新的文献求助10
32秒前
钟钟完成签到 ,获得积分10
35秒前
36秒前
bkagyin应助榴莲小胖采纳,获得10
36秒前
段段完成签到,获得积分10
37秒前
热心的忆山完成签到,获得积分10
37秒前
咸鱼完成签到,获得积分10
38秒前
风汐5423完成签到,获得积分10
40秒前
独指蜗牛完成签到 ,获得积分10
40秒前
古月完成签到,获得积分10
41秒前
yyd发布了新的文献求助10
42秒前
43秒前
CodeCraft应助Stata@R采纳,获得10
43秒前
迷人世开完成签到,获得积分0
43秒前
玩命的鹤完成签到 ,获得积分10
45秒前
45秒前
46秒前
46秒前
rmbsLHC发布了新的文献求助10
46秒前
46秒前
49秒前
榴莲小胖发布了新的文献求助10
50秒前
高分求助中
Encyclopedia of Mathematical Physics 2nd edition 888
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
Optical and electric properties of monocrystalline synthetic diamond irradiated by neutrons 320
共融服務學習指南 300
Essentials of Pharmacoeconomics: Health Economics and Outcomes Research 3rd Edition. by Karen Rascati 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3804086
求助须知:如何正确求助?哪些是违规求助? 3348869
关于积分的说明 10340814
捐赠科研通 3065078
什么是DOI,文献DOI怎么找? 1682870
邀请新用户注册赠送积分活动 808555
科研通“疑难数据库(出版商)”最低求助积分说明 764579