Cationic perturbation strategy to solve the information drought in material explainable machine learning

摄动(天文学) 阳离子聚合 计算机科学 人工智能 机器学习 物理 材料科学 量子力学 高分子化学
作者
Zhengxin Chen,Hange Wang,Bowen Liu,Hairui Zhou,Yingjie Cao,Yanan Wang,Peng Lin,Xiaolin Liu,Jia Lin,Xianfeng Chen,Jiang Wu
出处
期刊:Physical review [American Physical Society]
卷期号:109 (8) 被引量:7
标识
DOI:10.1103/physrevb.109.085306
摘要

In the field of materials research, machine learning (ML) techniques have emerged as indispensable tools. However, the opaqueness in decision making by models can compromise the trustworthiness of results, underscoring the crucial need for model interpretability. Explainable machine learning (XML) strives to augment researchers' comprehension of material properties and performance. Yet, reliance on high-quality datasets and scarcity of prior knowledge pose challenges for XML research, particularly when dealing with smaller datasets. In this study, using spinel as a representative example, we successfully addressed the data challenges in XML through a cationic perturbation strategy. We demonstrate an effective approach for handling information scarcity in small datasets, thus offering a feasible method for material research and broadening the scope of XML applications in materials science. Furthermore, our investigation successfully uncovered potential causal relationships underlying material properties and validated their consistency with physical cognition. These causal relationships can serve as experimental guides, facilitating the design and optimization of new materials. Consequently, this research holds significant scientific merit in advancing XML in the realm of materials science, while providing profound insights into material properties and fostering the development of reliable ML-based materials research.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
ffw1完成签到,获得积分10
1秒前
李健应助123采纳,获得10
1秒前
拍桌子完成签到,获得积分20
1秒前
熊阿阿完成签到 ,获得积分10
2秒前
3秒前
小鹿呀完成签到,获得积分10
4秒前
熊猫侠发布了新的文献求助10
4秒前
4秒前
哈哈哈完成签到,获得积分10
4秒前
lsm完成签到,获得积分10
5秒前
追寻芮完成签到,获得积分20
5秒前
5秒前
7秒前
xxfsx应助科研通管家采纳,获得10
7秒前
上官若男应助科研通管家采纳,获得10
7秒前
7秒前
Akim应助科研通管家采纳,获得10
7秒前
7秒前
星辰大海应助科研通管家采纳,获得10
7秒前
完美世界应助科研通管家采纳,获得10
8秒前
羊角包关注了科研通微信公众号
8秒前
xxfsx应助科研通管家采纳,获得10
8秒前
星辰大海应助科研通管家采纳,获得20
8秒前
8秒前
自由寄柔应助科研通管家采纳,获得10
8秒前
Anima应助科研通管家采纳,获得10
8秒前
科研通AI6应助科研通管家采纳,获得10
8秒前
8秒前
完美世界应助zc采纳,获得10
8秒前
8秒前
鄂老三完成签到,获得积分10
8秒前
8秒前
evilpiso发布了新的文献求助10
8秒前
xxfsx应助科研通管家采纳,获得10
8秒前
Owen应助科研通管家采纳,获得10
8秒前
汉堡包应助科研通管家采纳,获得10
8秒前
9秒前
传奇3应助科研通管家采纳,获得10
9秒前
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
On the Angular Distribution in Nuclear Reactions and Coincidence Measurements 1000
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
A complete Carnosaur Skeleton From Zigong, Sichuan- Yangchuanosaurus Hepingensis 四川自贡一完整肉食龙化石-和平永川龙 600
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5307165
求助须知:如何正确求助?哪些是违规求助? 4452863
关于积分的说明 13855440
捐赠科研通 4340491
什么是DOI,文献DOI怎么找? 2383191
邀请新用户注册赠送积分活动 1378035
关于科研通互助平台的介绍 1345875