A machine learning method to predict rate constants for various reactions in combustion kinetic models

燃烧 动能 反应速率常数 热力学 化学 动力学 物理化学 物理 经典力学
作者
Ning Li,Sanket Girhe,Mingzhi Zhang,Bingjie Chen,Yingjia Zhang,Shenghua Liu,Heinz Pitsch
出处
期刊:Combustion and Flame [Elsevier BV]
卷期号:263: 113375-113375 被引量:12
标识
DOI:10.1016/j.combustflame.2024.113375
摘要

Accurate prediction of temperature-dependent reaction rate constants is essential for the development of combustion kinetic models. However, the computational expense associated with calculating rate constants using high-level quantum chemistry methods becomes infeasible as the complexity of the kinetic models grows, and alternative approaches relying on analogies can exhibit significant inaccuracies. In recent times, as the field of combustion has generated a vast volume of kinetic data, the utilization of data-driven approaches, specifically machine learning, holds great promise in facilitating the development of kinetic models. In particular, natural language processing (NLP) models, such as ChatGPT, have become very useful. Here, we propose a deep neural network-based model to predict rate constants, and to explore the potential of machine learning methods to facilitate combustion kinetic model development. A diverse and high-quality dataset has been compiled concerning high-pressure limit reaction rate constants from nine important reaction classes. As the common representation of chemical reactions forms a language, we use the BERT transformer from that is part of common NLP techniques to generate reaction fingerprints from reaction SMILES. The model employs these reaction fingerprints as input to predict the three modified-Arrhenius parameters, i.e. the log of the frequency parameter (ln A), temperature exponent (n), and activation energy (Ea). A joint loss function is introduced to ensure that the rate constants calculated from the predicted Arrhenius parameters jointly provide good accuracy and to avoid overfitting. The final model achieves coefficients of determination (R2) of 0.74, 0.71, and 0.96 for the predictions of ln A, n, and Ea, respectively. The calculated rate constants, based on the predicted Arrhenius parameters, exhibit an R2 value of 0.95 across the temperature range of 500–2000 K. Additionally, the model's ability to predict rate constants in reaction mechanisms for different fuels is evaluated through species-based cross-validation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
善良的访冬完成签到,获得积分10
刚刚
刚刚
刚刚
2秒前
魏伯安发布了新的文献求助10
2秒前
2秒前
务实的惋清完成签到 ,获得积分10
2秒前
年少发布了新的文献求助10
2秒前
zhou269完成签到,获得积分10
3秒前
4秒前
4秒前
xuehuali发布了新的文献求助10
5秒前
6秒前
7秒前
gjm发布了新的文献求助100
8秒前
9秒前
谜迪完成签到 ,获得积分10
9秒前
Vincent发布了新的文献求助10
10秒前
10秒前
11秒前
13秒前
CR7应助大气的懒羊羊采纳,获得20
13秒前
李梓明发布了新的文献求助10
14秒前
BINGBING发布了新的文献求助10
14秒前
14秒前
xuehuali完成签到,获得积分10
15秒前
sevry发布了新的文献求助30
15秒前
润森发布了新的文献求助10
15秒前
博修发布了新的文献求助10
16秒前
Allen0520完成签到,获得积分10
16秒前
冷笑完成签到,获得积分10
17秒前
xslj发布了新的文献求助10
18秒前
重回地球发布了新的文献求助10
20秒前
科研通AI5应助gjm采纳,获得10
20秒前
赘婿应助摆烂采纳,获得10
21秒前
善学以致用应助李梓明采纳,获得10
23秒前
小二郎应助zhaoyali采纳,获得10
23秒前
今后应助zhzh0618采纳,获得30
24秒前
25秒前
爆米花应助大概是Hachi8采纳,获得10
25秒前
高分求助中
(禁止应助)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Robot-supported joining of reinforcement textiles with one-sided sewing heads 800
水稻光合CO2浓缩机制的创建及其作用研究 500
Logical form: From GB to Minimalism 500
2025-2030年中国消毒剂行业市场分析及发展前景预测报告 500
The Netter Collection of Medical Illustrations: Digestive System, Volume 9, Part III – Liver, Biliary Tract, and Pancreas, 3rd Edition 400
Elliptical Fiber Waveguides 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4170464
求助须知:如何正确求助?哪些是违规求助? 3706072
关于积分的说明 11693885
捐赠科研通 3392155
什么是DOI,文献DOI怎么找? 1860552
邀请新用户注册赠送积分活动 920377
科研通“疑难数据库(出版商)”最低求助积分说明 832674