Multi-Template Meta-Information Regularized Network for Alzheimer’s Disease Diagnosis Using Structural MRI

元数据 计算机科学 神经影像学 混淆 阿尔茨海默病神经影像学倡议 人工智能 正规化(语言学) 机器学习 疾病 相互信息 荟萃分析 功能磁共振成像 阿尔茨海默病 医学 心理学 神经科学 病理 操作系统
作者
Kangfu Han,Gang Li,Zhiwen Fang,Feng Yang
出处
期刊:IEEE Transactions on Medical Imaging [Institute of Electrical and Electronics Engineers]
卷期号:43 (5): 1664-1676 被引量:6
标识
DOI:10.1109/tmi.2023.3344384
摘要

Structural magnetic resonance imaging (sMRI) has been widely applied in computer-aided Alzheimer's disease (AD) diagnosis, owing to its capabilities in providing detailed brain morphometric patterns and anatomical features in vivo. Although previous works have validated the effectiveness of incorporating metadata (e.g., age, gender, and educational years) for sMRI-based AD diagnosis, existing methods solely paid attention to metadata-associated correlation to AD (e.g., gender bias in AD prevalence) or confounding effects (e.g., the issue of normal aging and metadata-related heterogeneity). Hence, it is difficult to fully excavate the influence of metadata on AD diagnosis. To address these issues, we constructed a novel Multi-template Meta-information Regularized Network (MMRN) for AD diagnosis. Specifically, considering diagnostic variation resulting from different spatial transformations onto different brain templates, we first regarded different transformations as data augmentation for self-supervised learning after template selection. Since the confounding effects may arise from excessive attention to meta-information owing to its correlation with AD, we then designed the modules of weakly supervised meta-information learning and mutual information minimization to learn and disentangle meta-information from learned class-related representations, which accounts for meta-information regularization for disease diagnosis. We have evaluated our proposed MMRN on two public multi-center cohorts, including the Alzheimer's Disease Neuroimaging Initiative (ADNI) with 1,950 subjects and the National Alzheimer's Coordinating Center (NACC) with 1,163 subjects. The experimental results have shown that our proposed method outperformed the state-of-the-art approaches in both tasks of AD diagnosis, mild cognitive impairment (MCI) conversion prediction, and normal control (NC) vs. MCI vs. AD classification.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
无为完成签到,获得积分10
刚刚
勤恳的书文完成签到 ,获得积分10
6秒前
铜锣湾小研仔完成签到,获得积分10
8秒前
2025顺顺利利完成签到 ,获得积分10
8秒前
10秒前
13秒前
bull9518发布了新的文献求助10
13秒前
裴仰纳完成签到 ,获得积分10
14秒前
15秒前
moroa完成签到,获得积分10
16秒前
jun完成签到 ,获得积分10
18秒前
求知的周完成签到,获得积分10
19秒前
Cynthia发布了新的文献求助10
21秒前
嗝嗝完成签到,获得积分10
21秒前
冰留完成签到 ,获得积分10
21秒前
七仔完成签到 ,获得积分10
26秒前
泥過完成签到 ,获得积分10
28秒前
EMMA完成签到,获得积分20
30秒前
ranj完成签到,获得积分10
31秒前
橙子慢慢来完成签到,获得积分10
35秒前
笑点低的斑马完成签到,获得积分10
36秒前
Cynthia完成签到,获得积分20
37秒前
bull9518发布了新的文献求助10
41秒前
杨白秋完成签到,获得积分10
44秒前
科研狗的春天完成签到 ,获得积分10
46秒前
周小鱼完成签到,获得积分10
46秒前
MADAO完成签到 ,获得积分10
47秒前
ddd完成签到,获得积分10
49秒前
meixinhu完成签到,获得积分10
49秒前
救我完成签到,获得积分10
51秒前
53秒前
139完成签到 ,获得积分0
54秒前
简奥斯汀完成签到 ,获得积分10
56秒前
58秒前
59秒前
牧百川发布了新的文献求助10
1分钟前
所所应助xuxu采纳,获得10
1分钟前
DireWolf完成签到 ,获得积分10
1分钟前
尔玉完成签到 ,获得积分10
1分钟前
1分钟前
高分求助中
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
Optical and electric properties of monocrystalline synthetic diamond irradiated by neutrons 320
共融服務學習指南 300
Essentials of Pharmacoeconomics: Health Economics and Outcomes Research 3rd Edition. by Karen Rascati 300
Peking Blues // Liao San 300
Political Ideologies Their Origins and Impact 13 edition 240
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3800999
求助须知:如何正确求助?哪些是违规求助? 3346581
关于积分的说明 10329619
捐赠科研通 3063070
什么是DOI,文献DOI怎么找? 1681341
邀请新用户注册赠送积分活动 807491
科研通“疑难数据库(出版商)”最低求助积分说明 763726