Multi-Template Meta-Information Regularized Network for Alzheimer’s Disease Diagnosis Using Structural MRI

元数据 计算机科学 神经影像学 混淆 阿尔茨海默病神经影像学倡议 人工智能 正规化(语言学) 机器学习 疾病 相互信息 荟萃分析 功能磁共振成像 阿尔茨海默病 医学 心理学 神经科学 病理 操作系统
作者
Kangfu Han,Gang Li,Zhiwen Fang,Feng Yang
出处
期刊:IEEE Transactions on Medical Imaging [Institute of Electrical and Electronics Engineers]
卷期号:43 (5): 1664-1676 被引量:6
标识
DOI:10.1109/tmi.2023.3344384
摘要

Structural magnetic resonance imaging (sMRI) has been widely applied in computer-aided Alzheimer's disease (AD) diagnosis, owing to its capabilities in providing detailed brain morphometric patterns and anatomical features in vivo. Although previous works have validated the effectiveness of incorporating metadata (e.g., age, gender, and educational years) for sMRI-based AD diagnosis, existing methods solely paid attention to metadata-associated correlation to AD (e.g., gender bias in AD prevalence) or confounding effects (e.g., the issue of normal aging and metadata-related heterogeneity). Hence, it is difficult to fully excavate the influence of metadata on AD diagnosis. To address these issues, we constructed a novel Multi-template Meta-information Regularized Network (MMRN) for AD diagnosis. Specifically, considering diagnostic variation resulting from different spatial transformations onto different brain templates, we first regarded different transformations as data augmentation for self-supervised learning after template selection. Since the confounding effects may arise from excessive attention to meta-information owing to its correlation with AD, we then designed the modules of weakly supervised meta-information learning and mutual information minimization to learn and disentangle meta-information from learned class-related representations, which accounts for meta-information regularization for disease diagnosis. We have evaluated our proposed MMRN on two public multi-center cohorts, including the Alzheimer's Disease Neuroimaging Initiative (ADNI) with 1,950 subjects and the National Alzheimer's Coordinating Center (NACC) with 1,163 subjects. The experimental results have shown that our proposed method outperformed the state-of-the-art approaches in both tasks of AD diagnosis, mild cognitive impairment (MCI) conversion prediction, and normal control (NC) vs. MCI vs. AD classification.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
下载文章即可完成签到,获得积分10
1秒前
1秒前
唐唐完成签到,获得积分10
2秒前
未来可期发布了新的文献求助10
3秒前
xr完成签到,获得积分10
3秒前
xx_y完成签到 ,获得积分10
3秒前
3秒前
3秒前
3秒前
4秒前
5秒前
Bluecrane完成签到,获得积分10
5秒前
两碗牛又面完成签到,获得积分10
6秒前
LL发布了新的文献求助10
6秒前
无心的紫山完成签到,获得积分10
7秒前
洪某盆发布了新的文献求助10
7秒前
7秒前
7秒前
否极泰来发布了新的文献求助30
8秒前
NexusExplorer应助唐唐采纳,获得10
8秒前
笋枭喘发布了新的文献求助10
8秒前
JX完成签到,获得积分10
8秒前
8秒前
西门如豹发布了新的文献求助10
8秒前
立军发布了新的文献求助10
9秒前
11秒前
852应助猪猪hero采纳,获得10
11秒前
candy完成签到,获得积分20
11秒前
12秒前
13秒前
bkagyin应助黄雨果采纳,获得10
13秒前
我是老大应助paggyfight采纳,获得10
13秒前
qin完成签到,获得积分10
14秒前
12345发布了新的文献求助10
14秒前
15秒前
16秒前
田様应助爱听歌代萱采纳,获得10
16秒前
wzg666完成签到,获得积分10
17秒前
为你博弈发布了新的文献求助10
17秒前
高分求助中
【请各位用户详细阅读此贴后再求助】科研通的精品贴汇总(请勿应助) 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Research on Disturbance Rejection Control Algorithm for Aerial Operation Robots 1000
Global Eyelash Assessment scale (GEA) 1000
Maritime Applications of Prolonged Casualty Care: Drowning and Hypothermia on an Amphibious Warship 500
Comparison analysis of Apple face ID in iPad Pro 13” with first use of metasurfaces for diffraction vs. iPhone 16 Pro 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4050616
求助须知:如何正确求助?哪些是违规求助? 3588908
关于积分的说明 11404693
捐赠科研通 3315206
什么是DOI,文献DOI怎么找? 1823596
邀请新用户注册赠送积分活动 895511
科研通“疑难数据库(出版商)”最低求助积分说明 816843