Assessing the influence of sugarcane bagasse ash for the production of eco-friendly concrete: Experimental and machine learning approaches

下跌 极限抗拉强度 抗弯强度 抗压强度 材料科学 蔗渣 含水量 压实 决定系数 复合材料 数学 制浆造纸工业 岩土工程 工程类 统计
作者
Md. Habibur Rahman Sobuz,Al-Imran,Shuvo Dip Datta,Jannat Ara Jabin,Fahim Shahriar Aditto,Noor Md. Sadiqul Hasan,Mahamudul Hasan,Ahmad Akib Uz Zaman
出处
期刊:Case Studies in Construction Materials [Elsevier]
卷期号:20: e02839-e02839 被引量:84
标识
DOI:10.1016/j.cscm.2023.e02839
摘要

The innovative utilization of sugarcane bagasse ash (SCBA) in producing lightweight concrete (LWC) needs to be explored experimentally and quantification with machine learning approaches. Therefore, this study aims to investigate fresh, mechanical and microstructural characteristics and machine learning modeling of incorporating SCBA as a partial substitute of cement. In this investigation, OPC was replaced partially by the weight of SCBA in the proportion of 0 %, 5 %, 10 %, 15 %, and 20 %. The influences of SCBA on the fresh characteristics of concrete were investigated through tests of the slump, compacting factor, Kelly ball, k-slump, density, and air content. In addition, for hardened properties compressive, splitting tensile, flexural strength, and static modulus of elasticity were tested at 7 and 28 days. Furthermore, a microstructural characteristic was carried out for varying content of SCBA. Different machine learning (ML) predictive models were performed utilizing artificial neural network (ANN) and random forest (RF), to predict the fresh and mechanical attributes of the LWC. It was noticed that the workability value of fresh concrete was enhanced almost by 40 % to 50 % with the incorporation of SCBA content. The hardened test results revealed that a mixture having SCBA up to 10 % content SCBA resulted in nearly 10 % to 30 % better performance to satisfy the requirement of LWC. Regarding the sustainability assessment, the less embodied CO2 (eCO2) is produced in SCBA mixes, whereas it is also economically beneficial to produce SCBA mixes. Models' efficacy was evaluated including mean absolute error (MAE), root mean squared error (RMSE), and coefficient of determination (R2). The maximum R2 and minimum RMSE came across for RF (0.989 and 1.393, respectively) which provides the well estimation of the model.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
3秒前
3秒前
任燕杰完成签到,获得积分10
3秒前
RyanColin完成签到,获得积分10
4秒前
汉堡包应助米酒汤圆采纳,获得10
4秒前
5秒前
April完成签到 ,获得积分20
5秒前
6秒前
Jasper应助佚名采纳,获得10
6秒前
姜且完成签到,获得积分10
6秒前
wxyshare应助聪慧冬天采纳,获得10
8秒前
junlin应助Yang采纳,获得10
8秒前
jy完成签到,获得积分10
8秒前
CodeCraft应助椿淼采纳,获得10
9秒前
11秒前
WN发布了新的文献求助10
12秒前
尹善冰完成签到,获得积分10
13秒前
14秒前
量子星尘发布了新的文献求助10
15秒前
sol发布了新的文献求助10
15秒前
麦克阿宇完成签到,获得积分10
15秒前
hhh发布了新的文献求助20
16秒前
00发布了新的文献求助10
17秒前
view完成签到,获得积分10
17秒前
汉堡包应助猪米妮采纳,获得10
18秒前
对苏发布了新的文献求助20
18秒前
Mutsu发布了新的文献求助10
20秒前
大模型应助你说要叫啥采纳,获得10
20秒前
xxw完成签到,获得积分10
20秒前
冷酷的白羊完成签到,获得积分10
20秒前
木中一发布了新的文献求助10
21秒前
22秒前
23秒前
李爱国应助黑马王子采纳,获得10
23秒前
24秒前
李健的粉丝团团长应助gzl采纳,获得10
25秒前
26秒前
26秒前
diplomat应助小鱼采纳,获得30
27秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
Encyclopedia of Agriculture and Food Systems Third Edition 1500
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 600
The Scope of Slavic Aspect 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5536760
求助须知:如何正确求助?哪些是违规求助? 4624404
关于积分的说明 14591829
捐赠科研通 4564906
什么是DOI,文献DOI怎么找? 2501995
邀请新用户注册赠送积分活动 1480743
关于科研通互助平台的介绍 1451989