Research on precision visual inspection technology based on new energy battery manufacturing

计算机科学 人工智能 计算机视觉 图像处理 小波 电池(电) 噪音(视频) 过程(计算) 小波变换 降噪 图像(数学) 量子力学 操作系统 物理 功率(物理)
作者
Hong Zhou,Dan Huang,Yongxing Yu
标识
DOI:10.1117/12.3006182
摘要

In recent years, the lithium battery industry has been developing rapidly, and in the process of its large-scale industrialized production, the automatic defect detection technology based on machine vision has extremely important research value. Because of the complexity of the lithium battery production environment, the defect morphology is variable, the current research results for lithium battery pole piece defect detection is relatively small. In order to meet the needs of lithium battery pole piece defect detection speed and accuracy, to solve the problems of complex background noise, defects and low contrast in the pole piece image, this paper proposes a lithium battery pole piece defect detection algorithm based on machine vision technology, firstly, adopt the topological mapping based on the weighted average neighborhood closure curve filtering template for the image noise reduction processing, and then use the wavelet transform based on the multiscale detail enhancement method for image enhancement processing;; subsequently, adopt the multi-scale detail enhancement method based on wavelet transform for image enhancement processing; and subsequently, use the topological mapping based on the weighted average neighborhood closure curve for image enhancement processing. Then, in order to solve the problem of uneven illumination and more speckle impurities in the polar film image, the area growth method is used and combined with differential geometry tools to extract the defect contour of the area to be tested; finally, the concept of Earth Move Distance (EMD) is introduced, which is used to compute the similarity between the obtained contour and various types of defect templates contours to realize the classification of defects. Experiments have shown that the algorithm in this paper improves the speed and accuracy of defect detection on the surface of the pole piece, retains the details of the defect edges, detects small defects with low contrast, and extracts the complete defect contour, which better meets the actual needs of industrial production.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
QSJ完成签到,获得积分10
1秒前
LAN完成签到,获得积分10
2秒前
Jeremy637完成签到 ,获得积分10
5秒前
赵田完成签到 ,获得积分10
7秒前
吹泡泡的红豆完成签到 ,获得积分10
9秒前
10秒前
1111发布了新的文献求助10
11秒前
C_Li完成签到,获得积分10
14秒前
南城雨落完成签到,获得积分10
16秒前
枯叶蝶发布了新的文献求助10
16秒前
鸣鸣完成签到,获得积分10
19秒前
jameslee04完成签到 ,获得积分10
20秒前
lani完成签到 ,获得积分10
20秒前
小事完成签到 ,获得积分10
21秒前
科研小白完成签到,获得积分10
22秒前
经纲完成签到 ,获得积分0
23秒前
陈皮完成签到 ,获得积分10
23秒前
懒猫完成签到,获得积分10
24秒前
Cyrus完成签到,获得积分10
25秒前
疯狂的绝山完成签到 ,获得积分10
27秒前
cugwzr完成签到,获得积分10
27秒前
pangzh完成签到,获得积分10
29秒前
yiryir完成签到 ,获得积分10
30秒前
帆帆帆完成签到 ,获得积分10
33秒前
皮皮完成签到 ,获得积分10
33秒前
bzdjsmw完成签到 ,获得积分10
36秒前
38秒前
lapin完成签到,获得积分10
40秒前
Akim应助科研通管家采纳,获得10
40秒前
隐形曼青应助科研通管家采纳,获得10
40秒前
cdercder应助科研通管家采纳,获得10
40秒前
夏来应助科研通管家采纳,获得10
40秒前
cdercder应助科研通管家采纳,获得10
40秒前
40秒前
科研通AI2S应助科研通管家采纳,获得10
40秒前
cdercder应助科研通管家采纳,获得10
40秒前
故酒完成签到,获得积分10
42秒前
所所应助大分子采纳,获得10
43秒前
Singularity完成签到,获得积分0
44秒前
科研通AI5应助矿泉水采纳,获得10
47秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Izeltabart tapatansine - AdisInsight 500
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
Epigenetic Drug Discovery 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3815909
求助须知:如何正确求助?哪些是违规求助? 3359386
关于积分的说明 10402490
捐赠科研通 3077249
什么是DOI,文献DOI怎么找? 1690255
邀请新用户注册赠送积分活动 813667
科研通“疑难数据库(出版商)”最低求助积分说明 767743