A Multiple‐Point Deformation Monitoring Model for Ultrahigh Arch Dams Using Temperature Lag and Optimized Gaussian Process Regression

拱门 滞后 拱坝 克里金 高斯过程 变形监测 过程(计算) 回归 变形(气象学) 高斯分布 回归分析 点(几何) 材料科学 数学 统计 计算机科学 结构工程 物理 工程类 复合材料 几何学 计算机网络 量子力学 操作系统
作者
Bangbin Wu,Jingtai Niu,Zhiping Deng,Shuanglong Li,Xinxin Jiang,Wuwen Qian,Zhiqiang Wang
出处
期刊:Structural control & health monitoring [Wiley]
卷期号:2024 (1)
标识
DOI:10.1155/2024/2308876
摘要

Existing dam displacement statistical methods simulate the thermal effects using simple harmonic functions ignoring the effects of ice periods, extreme heat, and seasonal weather. Moreover, existing data‐driven methods usually utilize a separate modeling strategy, inevitably ignoring the spatiotemporal correlation of multiple displacement points in dams, resulting in poor predictive performance. To overcome these shortcomings, this study proposes a novel machine learning (ML)—aided multiple‐point dam displacement predictive model considering the temperature hysteresis effect. Firstly, an improved hydraulic‐Air_temperture_Time (HT air T) statistical monitoring model is developed using the measured air temperature lagging monitoring data. On this basis, the multitask Gaussian process regression (multipoint GPR) algorithm with an improved kernel function to construct a multipoint deformation prediction model for ultrahigh arch dams. Then, the improved meta‐heuristic physics‐driven Frost algorithm is utilized to determine the optimal parameters of the multipoint GPR model. A high arch dam with a height of 305 m is used as the case study, and five displacement monitoring points are used for validation. Five advanced ML‐based algorithms are used to comparatively evaluate and verify the performance of the proposed method in terms of forecast accuracy and interpretability. The HT air T statistical model can better simulate the hysteresis effect of temperature on dam deformation. Moreover, the Frost‐optimized dam multipoint displacement prediction model with the RQ kernel functions outperforms the other comparison methods in terms of R 2 , mean absolute error (MAE), and root mean squared error (RMSE) evaluation indicators. This indicates the proposed method can mine the spatiotemporal correlation among multiple monitoring points of ultrahigh arch dams, further improving the overall deformation prediction and uncertainty estimation.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
aaaaa小柴完成签到,获得积分10
刚刚
刚刚
1秒前
1秒前
哈尼完成签到,获得积分10
1秒前
1秒前
1秒前
1秒前
2秒前
汉堡包应助Airers采纳,获得10
3秒前
爆米花应助风儿采纳,获得10
3秒前
Davin完成签到,获得积分10
3秒前
量子星尘发布了新的文献求助10
4秒前
carl发布了新的文献求助20
5秒前
ZZICU完成签到,获得积分10
5秒前
5秒前
热情蜗牛发布了新的文献求助10
5秒前
高高诗柳完成签到 ,获得积分10
6秒前
鱼雁发布了新的文献求助10
7秒前
wry完成签到,获得积分10
7秒前
潇洒诗槐发布了新的文献求助30
7秒前
阿戴发布了新的文献求助10
8秒前
炙热的诗桃关注了科研通微信公众号
8秒前
8秒前
肥宅快乐水完成签到,获得积分10
9秒前
9秒前
10秒前
张润泽发布了新的文献求助10
10秒前
好运连连完成签到 ,获得积分10
10秒前
maidoudou完成签到,获得积分10
10秒前
万能图书馆应助小杨采纳,获得10
10秒前
魔幻宛白完成签到,获得积分10
10秒前
ww完成签到,获得积分20
11秒前
11秒前
研友_VZG7GZ应助小丁采纳,获得10
12秒前
cs发布了新的文献求助10
12秒前
13秒前
May发布了新的文献求助10
13秒前
girl完成签到,获得积分10
13秒前
上将军顺完成签到,获得积分10
13秒前
高分求助中
Africanfuturism: African Imaginings of Other Times, Spaces, and Worlds 3000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 2000
The Oxford Encyclopedia of the History of Modern Psychology 2000
Synthesis of 21-Thioalkanoic Acids of Corticosteroids 1000
Electron microscopy study of magnesium hydride (MgH2) for Hydrogen Storage 1000
Structural Equation Modeling of Multiple Rater Data 700
 Introduction to Comparative Public Administration Administrative Systems and Reforms in Europe, Third Edition 3rd edition 590
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3886385
求助须知:如何正确求助?哪些是违规求助? 3428538
关于积分的说明 10761163
捐赠科研通 3153324
什么是DOI,文献DOI怎么找? 1741041
邀请新用户注册赠送积分活动 840478
科研通“疑难数据库(出版商)”最低求助积分说明 785383