Imputation of Missing Data in Materials Science through Nearest Neighbors and Iterative Predictions

插补(统计学) 缺少数据 计算机科学 均方误差 随机森林 外推法 数据挖掘 数据集 统计 数学 人工智能
作者
Chunhui Xie,Rui Li,Yunqi Li,Haibo Xie,Qibin Liu
出处
期刊:Journal of Chemical Theory and Computation [American Chemical Society]
卷期号:21 (1): 70-78 被引量:8
标识
DOI:10.1021/acs.jctc.4c01237
摘要

Missing data in tabular data sets is ubiquitous in statistical analysis, big data analysis, and machine learning studies. Many strategies have been proposed to impute missing data, but their reliability has not been stringently assessed in materials science. Here, we carried out a benchmark test for six imputation strategies: Mean, MissForest, HyperImpute, Gain, Sinkhorn, and a newly proposed MatImpute on seven representative data sets in materials science. The imputation-induced errors (IIEs) were evaluated through the difference between imputed and original values, by root mean square error (RMSE), Wasserstein distance (WD), and a newly introduced metrics data set correlation convergence (DCC), to measure the difference at three aspects for individual data, column-wise distribution, and correlation stability of a data set. MatImpute outperformed the others with the least RMSE and WD and the highest DCC. The IIE increases with the increase of data missing ratio and in the order of missing at random < missing completely at random ≤ missing not at random, considering inherent correlations among missing data. A similar trend was observed for the increase of IIE along the central departure distance in units of the standard deviation, which is consistent with the increase of difficulty from interpolation to extrapolation. Further tests of IIE in regression and classification machine learning predictive models, MatImpute also preserved the highest data recovery fidelity. We released the code of MatImpute to facilitate the construction of high-quality data sets in materials science.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Vme50完成签到,获得积分10
刚刚
1秒前
大模型应助小趴菜采纳,获得10
1秒前
1秒前
2秒前
SciGPT应助水三寿采纳,获得10
2秒前
比个耶完成签到,获得积分10
2秒前
2秒前
多情新蕾发布了新的文献求助10
3秒前
3秒前
3秒前
乂领域发布了新的文献求助10
4秒前
orixero应助玄xuan采纳,获得10
4秒前
孤独听芹完成签到,获得积分20
4秒前
阿静完成签到,获得积分10
5秒前
5秒前
sqq完成签到,获得积分10
6秒前
萝卜应助Vme50采纳,获得10
6秒前
科研通AI6.1应助蓝天采纳,获得10
7秒前
科研通AI6.1应助蓝天采纳,获得10
7秒前
丘比特应助蓝天采纳,获得10
7秒前
科研通AI6.1应助蓝天采纳,获得10
7秒前
隐形曼青应助蓝天采纳,获得10
7秒前
万能图书馆应助蓝天采纳,获得10
7秒前
科研通AI6.1应助蓝天采纳,获得10
7秒前
搜集达人应助蓝天采纳,获得10
7秒前
乐乐应助蓝天采纳,获得10
7秒前
拉拉发布了新的文献求助10
7秒前
小二郎应助蓝天采纳,获得10
7秒前
英姑应助婷婷采纳,获得10
7秒前
7秒前
甜甜的悲发布了新的文献求助10
8秒前
8秒前
9秒前
Summer完成签到,获得积分10
9秒前
天天快乐应助1762120采纳,获得10
9秒前
Yue完成签到,获得积分10
11秒前
11秒前
慕青应助多情新蕾采纳,获得10
11秒前
水三寿完成签到,获得积分20
11秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 40000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5752892
求助须知:如何正确求助?哪些是违规求助? 5476951
关于积分的说明 15375158
捐赠科研通 4891749
什么是DOI,文献DOI怎么找? 2630691
邀请新用户注册赠送积分活动 1578841
关于科研通互助平台的介绍 1534725