堆积
材料科学
有机太阳能电池
动力学
旋涂
涂层
侧链
化学工程
能量转换效率
分子
富勒烯
接受者
有机电子学
纳米技术
分子间力
聚合物
光电子学
有机化学
复合材料
化学
物理
量子力学
工程类
凝聚态物理
晶体管
电压
作者
Junzhen Ren,Jianqiu Wang,Jiawei Qiao,Zhihao Chen,Xiaotao Hao,Shaoqing Zhang,Jianhui Hou
标识
DOI:10.1002/adma.202418353
摘要
Abstract The power conversion efficiencies (PCEs) of all‐printed organic solar cells (OSCs) remain inferior to those of spin‐coated devices, primarily due to morphological variations within the bulk heterojunction processed via diverse coating/printing techniques. Herein, cyclohexyl is introduced as outer side chains to formulate a non‐fullerene acceptor, BTP‐Cy, aimed at modulating the molecular aggregation in solution and subsequent film formation kinetics during printing. Investigations demonstrate that BTP‐Cy molecule with cyclohexyl side chains exhibits enhanced intermolecular π‐π stacking, optimal solution aggregation size, and favorable phase separation. Consequently, PB3:FTCC‐Br:BTP‐Cy‐based OSCs achieve remarkable PCEs of 20.2% and 19.5% via spin‐coating and blade‐coating, respectively. Furthermore, a 23.6 cm 2 module exhibits a remarkable efficiency of 16.7%. This study offers a fresh perspective on tailoring the film formation kinetics of photoactive materials during printing through molecular design, paving a novel path to enhance the efficiency of all‐printed OSCs.
科研通智能强力驱动
Strongly Powered by AbleSci AI