Risk Prediction Models as an Emerging Trend for Managing Cancer‐Related Fatigue: A Systematic Review

奇纳 预测建模 癌症相关疲劳 梅德林 乳腺癌 系统回顾 接收机工作特性 医学 风险评估 荟萃分析 癌症 心理干预 机器学习 计算机科学 内科学 精神科 计算机安全 政治学 法学
作者
Yun Zhang,Linna Li,Xia Li,Shu Zhang,Lin Zhou,Xiaoli Chen,Xiaolin Hu
出处
期刊:Journal of Advanced Nursing [Wiley]
被引量:3
标识
DOI:10.1111/jan.16680
摘要

ABSTRACT Aim To systematically identify, describe and evaluate the existing risk prediction models for cancer‐related fatigue. Design Systematic review. Data Sources Seven databases (EMBASE, Cochrane Database, MEDLINE, CINAHL, CNKI, SinoMed and Wanfang) were conducted from inception to August 14, 2023 and updated in September 15, 2024. Review Methods A systematic search was conducted to identify studies that reported the development of risk prediction models for cancer‐related fatigue. Two researchers independently performed a comprehensive assessment of the included studies. The Prediction Model Risk of Bias Assessment Tool was used to assess the risk of bias and applicability. Results Eighteen studies were included in this review. These models predicted cancer‐related fatigue in various cancers, including breast cancer, prostate cancer, gynaecological tumours and lung cancer. The most commonly included predictors were anxiety and depression, age, chemotherapy status, sleep quality and pain. Thirteen studies assessed the model performance by using the receiver operating characteristic curve. Although most models exhibited good predictive performance, a higher risk of bias was observed because of inappropriate handling of missing data methods and an imbalance in events per variable. Conclusion Prediction models show promise for cancer‐related fatigue management and precision care, but few are ready for clinical application due to methodological limitations. Implications for the Profession Future research should focus on improving the clinical utility of cancer‐related fatigue models while balancing predictive accuracy with cost‐effectiveness to promote equitable care. Impact This study critically systematically evaluated the prediction models of cancer‐related fatigue. The existing prediction models have a weak methodological foundation, with only a few having the potential to be implemented in clinical practice. Reporting Method The review is reported using the Preferred Reporting Items for Systematic Reviews and Meta‐Analyses (PRISMA) guidelines and the Transparent Reporting of a Multivariable Prediction Model for Individual Prognosis or Diagnosis in Systematic Reviews and Meta‐Analyses checklist (TRIPOD‐SRMA). Public Contribution No patient or public contribution.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
不回首完成签到 ,获得积分10
刚刚
执意完成签到 ,获得积分10
1秒前
5秒前
7秒前
zfy完成签到,获得积分10
8秒前
少司命发布了新的文献求助10
12秒前
13秒前
勤恳铃铛完成签到,获得积分10
13秒前
Jiaocm完成签到,获得积分10
16秒前
Conner完成签到 ,获得积分10
16秒前
RadiantYT完成签到,获得积分10
19秒前
丝色云月完成签到,获得积分10
19秒前
种花家的狗狗完成签到,获得积分10
20秒前
清泉暗飞声完成签到 ,获得积分10
22秒前
零零完成签到 ,获得积分10
23秒前
我独舞完成签到 ,获得积分10
24秒前
你看起来很好吃完成签到,获得积分10
24秒前
25秒前
26秒前
27秒前
junjie完成签到,获得积分10
28秒前
kl完成签到,获得积分10
28秒前
南北完成签到 ,获得积分10
29秒前
雨晴完成签到,获得积分10
29秒前
30秒前
jiao完成签到,获得积分10
30秒前
31秒前
tfr06完成签到,获得积分10
31秒前
少司命完成签到,获得积分10
31秒前
oldiao发布了新的文献求助10
34秒前
王闯完成签到,获得积分10
36秒前
17完成签到 ,获得积分10
38秒前
39秒前
王闯发布了新的文献求助10
41秒前
丘比特应助科研通管家采纳,获得10
41秒前
小杭76应助科研通管家采纳,获得10
41秒前
科目三应助科研通管家采纳,获得10
41秒前
田様应助科研通管家采纳,获得10
41秒前
华仔应助科研通管家采纳,获得10
42秒前
小明应助科研通管家采纳,获得10
42秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Rapid Review of Electrodiagnostic and Neuromuscular Medicine: A Must-Have Reference for Neurologists and Physiatrists 1000
The Handbook of Communication Skills 500
求中国石油大学(北京)图书馆的硕士论文,作者董晨,十年前搞太赫兹的 500
基于3um sOl硅光平台的集成发射芯片关键器件研究 500
Educational Research: Planning, Conducting, and Evaluating Quantitative and Qualitative Research 460
Teaching for Learning 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4795677
求助须知:如何正确求助?哪些是违规求助? 4116410
关于积分的说明 12734506
捐赠科研通 3845884
什么是DOI,文献DOI怎么找? 2119531
邀请新用户注册赠送积分活动 1141653
关于科研通互助平台的介绍 1030967