亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Development and validation of a machine learning model to predict cognitive behavioral therapy outcome in obsessive-compulsive disorder using clinical and neuroimaging data

神经影像学 强迫症 心理学 认知 认知行为疗法 临床心理学 医学 精神科
作者
Laurens A. van de Mortel,Willem B. Bruin,Pino Alonso,Sara Bertolín,Jamie D. Feusner,Joyce Guo,Kristen Hagen,Bjarne Hansen,Anders Lillevik Thorsen,Ignacio Martínez‐Zalacaín,José M. Menchón,Erika L. Nurmi,Joseph O’Neill,John Piacentini,Eva Real,Cinto Segalàs,Carles Soriano-Mas,Sophia I. Thomopoulos,Dan J. Stein,Paul M. Thompson
标识
DOI:10.1101/2025.02.14.25322265
摘要

Abstract Cognitive behavioral therapy (CBT) is a first-line treatment for obsessive-compulsive disorder (OCD), but clinical response is difficult to predict. In this study, we aimed to develop predictive models using clinical and neuroimaging data from the multicenter Enhancing Neuro-Imaging and Genetics through Meta-Analysis (ENIGMA)-OCD consortium. Baseline clinical and resting-state functional magnetic imaging (rs-fMRI) data from 159 adult patients aged 18-60 years (88 female) with OCD who received CBT at four treatment/neuroimaging sites were included. Fractional amplitude of low frequency fluctuations, regional homogeneity and atlas-based functional connectivity were computed. Clinical CBT response and remission were predicted using support vector machine and random forest classifiers on clinical data only, rs-fMRI data only, and the combination of both clinical and rs-fMRI data. The use of only clinical data yielded an area under the ROC curve (AUC) of 0.69 for predicting remission (p=0.001). Lower baseline symptom severity, younger age, an absence of cleaning obsessions, unmedicated status, and higher education had the highest model impact in predicting remission. The best predictive performance using only rs-fMRI was obtained with regional homogeneity for remission (AUC=0.59). Predicting response with rs-fMRI generally did not exceed chance level. Machine learning models based on clinical data may thus hold promise in predicting remission after CBT for OCD, but the predictive power of multicenter rs-fMRI data is limited.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
赘婿应助科研通管家采纳,获得10
5秒前
嘻嘻哈哈应助科研通管家采纳,获得10
5秒前
Criminology34应助科研通管家采纳,获得10
5秒前
浮游应助科研通管家采纳,获得10
5秒前
Criminology34应助科研通管家采纳,获得10
5秒前
嘻嘻哈哈应助科研通管家采纳,获得10
5秒前
5秒前
Lucas应助科研通管家采纳,获得10
5秒前
小潘完成签到 ,获得积分10
6秒前
浮游应助lhy采纳,获得10
11秒前
www完成签到 ,获得积分10
11秒前
fang完成签到,获得积分10
12秒前
yin景景完成签到,获得积分10
21秒前
22秒前
丹丹子完成签到 ,获得积分10
27秒前
斯文梦寒完成签到 ,获得积分10
31秒前
烟花应助113采纳,获得10
39秒前
40秒前
英姑应助yxj采纳,获得10
41秒前
牛马研究生完成签到 ,获得积分10
41秒前
46秒前
fang完成签到,获得积分10
48秒前
50秒前
113发布了新的文献求助10
50秒前
52秒前
53秒前
kekekeke完成签到 ,获得积分10
55秒前
yxj发布了新的文献求助10
55秒前
58秒前
58秒前
Milton_z完成签到 ,获得积分0
1分钟前
1分钟前
wlq完成签到,获得积分10
1分钟前
1分钟前
1分钟前
ding应助xhDoc采纳,获得30
1分钟前
淡定的翠霜完成签到 ,获得积分10
1分钟前
梦华完成签到 ,获得积分10
1分钟前
为十完成签到 ,获得积分10
1分钟前
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Kolmogorov, A. N. Qualitative study of mathematical models of populations. Problems of Cybernetics, 1972, 25, 100-106 800
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices 500
Performance optimization of advanced vapor compression systems working with low-GWP refrigerants using numerical and experimental methods 500
Constitutional and Administrative Law 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5301742
求助须知:如何正确求助?哪些是违规求助? 4449232
关于积分的说明 13848006
捐赠科研通 4335250
什么是DOI,文献DOI怎么找? 2380243
邀请新用户注册赠送积分活动 1375213
关于科研通互助平台的介绍 1341252