AttmNet: a hybrid Transformer integrating self-attention, Mamba, and multi-layer convolution for enhanced lesion segmentation

分割 计算机科学 病变 变压器 人工智能 模式识别(心理学) 医学 病理 电气工程 电压 工程类
作者
Hancan Zhu,Yibing Huang,Kangfei Yao,Jin Shang,Keli Hu,Zhong Li,Guanghua He
出处
期刊:Quantitative imaging in medicine and surgery [AME Publishing Company]
卷期号:15 (5): 4296-4310
标识
DOI:10.21037/qims-2024-2561
摘要

Accurate lesion segmentation is critical for cancer diagnosis and treatment. Convolutional neural networks (CNNs) are widely used for medical image segmentation but struggle to capture long-range dependencies. Transformers mitigate this limitation but come with high computational costs. Mamba, a state-space model (SSM), efficiently models long-range dependencies but lacks precision in fine details. To address these challenges, this study aimed to develop a novel segmentation approach that combines the strengths of CNNs, Transformers, and Mamba, enhancing both global context understanding and local feature extraction in medical image segmentation. We propose AttmNet, a U-shaped network designed for medical image segmentation, which incorporates a novel structure called MAM (Multiscale-Convolution, Self-Attention, and Mamba). The MAM block integrates multi-layer convolution for multi-scale feature learning with an Att-Mamba component that combines self-attention and Mamba to effectively capture global context while preserving fine details. We evaluated AttmNet on four public datasets for breast, skin, and lung lesion segmentation. AttmNet outperformed state-of-the-art methods in terms of intersection over union (IoU) and Dice similarity coefficients. On the breast ultrasound (BUS) dataset, AttmNet achieved a 3.38% improvement in IoU and a 4.54% increase in Dice over the next best method. On the breast ultrasound images (BUSI) dataset, AttmNet's IoU and Dice coefficients were 1.17% and 3.21% higher than the closest competitor, respectively. In the PH2 Dermoscopy Image dataset, AttmNet surpassed the next best model by 0.25% in both IoU and Dice. On the larger coronavirus disease 2019 (COVID-19) Lung dataset, AttmNet maintained strong performance, achieving higher IoU and Dice scores than the next best models, SegMamba and TransUNet. AttmNet is a powerful and efficient tool for medical image segmentation, addressing the limitations of existing methods through its advanced design. The MAM block significantly enhances segmentation accuracy while maintaining computational efficiency, making AttmNet highly suitable for clinical applications. The code is available at https://github.com/hyb2840/AttmNet.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
虚心的爆米花完成签到,获得积分10
1秒前
1秒前
知性的剑身完成签到,获得积分10
1秒前
1秒前
曹冬子程完成签到,获得积分10
2秒前
yuminger完成签到 ,获得积分10
2秒前
耶耶耶酥完成签到,获得积分10
3秒前
直率绮南完成签到 ,获得积分10
3秒前
小白完成签到,获得积分10
3秒前
ss发布了新的文献求助10
3秒前
张诗坤完成签到,获得积分10
3秒前
科研通AI6应助柠檬采纳,获得10
3秒前
紧跟关注了科研通微信公众号
4秒前
乔治哇发布了新的文献求助10
5秒前
zzzzz发布了新的文献求助10
5秒前
5秒前
5秒前
yang1完成签到,获得积分10
6秒前
qq发布了新的文献求助10
6秒前
mingpu完成签到,获得积分10
6秒前
7秒前
矿矿发布了新的文献求助10
7秒前
大黑狗完成签到,获得积分10
7秒前
8秒前
HopeStar发布了新的文献求助10
10秒前
Xianhe完成签到,获得积分10
10秒前
乔治哇完成签到,获得积分10
11秒前
12秒前
噗啧啧发布了新的文献求助10
13秒前
李健的小迷弟应助刘雨森采纳,获得10
13秒前
TOBET完成签到,获得积分10
13秒前
叩桥不渡完成签到,获得积分10
13秒前
14秒前
lainghy完成签到,获得积分10
14秒前
14秒前
紧跟发布了新的文献求助10
14秒前
沐沐完成签到 ,获得积分10
15秒前
bjx发布了新的文献求助10
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Inherited Metabolic Disease in Adults: A Clinical Guide 500
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
Sociologies et cosmopolitisme méthodologique 400
Why America Can't Retrench (And How it Might) 400
Another look at Archaeopteryx as the oldest bird 390
Partial Least Squares Structural Equation Modeling (PLS-SEM) using SmartPLS 3.0 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4634210
求助须知:如何正确求助?哪些是违规求助? 4029746
关于积分的说明 12468394
捐赠科研通 3716149
什么是DOI,文献DOI怎么找? 2050586
邀请新用户注册赠送积分活动 1082140
科研通“疑难数据库(出版商)”最低求助积分说明 964333