材料科学
剥脱关节
纳米片
数码产品
纳米技术
拉曼光谱
堆积
光致发光
光电子学
石墨烯
化学
有机化学
物理
物理化学
光学
作者
Yuri A. Mezenov,Semyon V. Bachinin,Yuliya Kenzhebayeva,Anastasiia S. Efimova,Pavel V. Alekseevskiy,Daria Poloneeva,Anastasia Lubimova,Svyatoslav A. Povarov,Vladimir Shirobokov,M. S. Dunaevskiy,Aleksandra S. Falchevskaya,Аndrei S. Potapov,Alexander S. Novikov,A. A. Sеlyutin,Pascal Boulet,Alena N. Kulakova,Valentin A. Milichko
标识
DOI:10.1002/advs.202405989
摘要
Abstract The transition from three‐dimensional (3D) to two‐dimensional (2D) semiconducting and insulating materials for micro‐ and opto‐electronics is driven by an energy efficiency and device miniaturization. Herein, the simplicity of growth and stacking of 2D metal–organic framework (MOF) with such planar devices opens up new perspectives in controlling their efficiency and operating parameters. Here, the study reports on 3D to 2D MOF’ structural transformation to achieve ultrathin nanosheets with enhanced insulating properties. Based on neutral N‐donor ligands, the study designs and solvothermally synthesizes 3D MOFs followed by their thermal and solvent treatment to implement the transformation. A set of single crystal and powder X‐ray diffraction, electron microscopy, Raman spectroscopy, numerical modeling, and mechanical exfoliation confirm the nature of the transformation. Compared with initial 3D MOF, its nanosheets demonstrate sufficient changes in electronic properties, expressed as tuning their absorption, photoluminescence, and resistivity. The latter allows to demonstrate the prototype of ultrathin memristive element based on a 4 to 32 nm MOF nanosheet with enhanced functionality (150 to 1400 ON/OFF ratio, retention time exceeding 7300 s, and 100 cycles of switching), thereby, extending the list of scalable and insulating 2D MOFs for micro‐ and opto‐electronics.
科研通智能强力驱动
Strongly Powered by AbleSci AI