亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Soaring Chemical Space of Battery Electrolytes Using Universal Machine Learning Potential

电池(电) 空格(标点符号) 化学空间 计算机科学 电解质 人工智能 化学 物理 热力学 电极 操作系统 功率(物理) 生物化学 物理化学 药物发现
作者
Feng Wang,Yuhang Tang,Ze-Bing Ma,Yucheng Jin,Jun Cheng
标识
DOI:10.26434/chemrxiv-2025-fnw1w
摘要

Li-ion batteries, widely used in electronic devices, electric vehicles, and aviation, demand high energy density, fast charging capabilities, and broad operating temperature ranges. Computational approaches combined with experimental design have gained increasing attention for electrolyte development. However, the inherent complexity of electrolytes—arising from their diverse compositions and varying proportions—poses a significant challenge. Classical molecular dynamics often fails due to inaccuracies in force field parameters, while ab initio calculations are limited by prohibitive computational costs. Machine learning molecular dynamics (MLMD) offers a promising alternative, combining efficiency with ab initio accuracy. However, its potential has been hindered by the transferability limitations of machine learning potentials (MLPs). In this work, we develop a universal machine learning potential (uMLP) for electrolytes by generating randomly composed electrolytes and employing an iterative training approach to collect representative datasets, effectively overcoming these limitations. The uMLP enables accurate computation of key properties, including density, solvation structure, viscosity, ionic conductivity, and operating temperature range, for a broad range of electrolytes through MLMD simulations. Furthermore, coordination dynamics analysis of Li+ , by quantifying the coordination lifetime (¯τ), provides a direct, quantitative measure of solvation strength. Shorter ¯τ, indicative of weak solvation, correlates with faster ion transport and higher ionic conductivity. The uMLP for electrolytes facilitates the prediction and optimization of electrolyte properties, offering a powerful tool for electrolyte design.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
4秒前
5秒前
6秒前
江枫渔火对愁眠完成签到,获得积分10
6秒前
洁净百川完成签到 ,获得积分10
8秒前
斯文败类应助slowstar采纳,获得10
8秒前
9秒前
11秒前
缥缈的绿兰完成签到,获得积分10
12秒前
CC完成签到 ,获得积分10
16秒前
chelsea发布了新的文献求助10
16秒前
务实书包完成签到,获得积分10
18秒前
21秒前
和谐续完成签到 ,获得积分10
27秒前
28秒前
33秒前
年年有余完成签到,获得积分10
38秒前
40秒前
斯文弘文发布了新的文献求助10
43秒前
47秒前
48秒前
49秒前
沉静乾发布了新的文献求助10
51秒前
Alinf完成签到,获得积分10
53秒前
_hhhjhhh完成签到 ,获得积分10
53秒前
slowstar发布了新的文献求助10
55秒前
CodeCraft应助斯文弘文采纳,获得10
57秒前
58秒前
小小完成签到 ,获得积分10
1分钟前
科研通AI2S应助活泼的诗兰采纳,获得10
1分钟前
1分钟前
1分钟前
荔枝发布了新的文献求助10
1分钟前
GGBoy完成签到,获得积分10
1分钟前
benz关注了科研通微信公众号
1分钟前
1分钟前
荔枝完成签到,获得积分10
1分钟前
可爱的函函应助小叮当采纳,获得10
1分钟前
1分钟前
高分求助中
【请各位用户详细阅读此贴后再求助】科研通的精品贴汇总(请勿应助) 10000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Global Eyelash Assessment scale (GEA) 1000
Maritime Applications of Prolonged Casualty Care: Drowning and Hypothermia on an Amphibious Warship 500
Comparison analysis of Apple face ID in iPad Pro 13” with first use of metasurfaces for diffraction vs. iPhone 16 Pro 500
Towards a $2B optical metasurfaces opportunity by 2029: a cornerstone for augmented reality, an incremental innovation for imaging (YINTR24441) 500
Materials for Green Hydrogen Production 2026-2036: Technologies, Players, Forecasts 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4053480
求助须知:如何正确求助?哪些是违规求助? 3591638
关于积分的说明 11413266
捐赠科研通 3317862
什么是DOI,文献DOI怎么找? 1824877
邀请新用户注册赠送积分活动 896263
科研通“疑难数据库(出版商)”最低求助积分说明 817398