Artificial Intelligence–Enabled Prediction of Heart Failure Risk From Single-Lead Electrocardiograms

医学 心力衰竭 内科学 队列 前瞻性队列研究 弗雷明翰风险评分 人口 心脏病学 疾病 环境卫生
作者
Lovedeep Singh Dhingra,Arya Aminorroaya,Aline F Pedroso,Akshay Khunte,Veer Sangha,Daniel McIntyre,Clara K Chow,Folkert W. Asselbergs,Luísa Campos Caldeira Brant,Sandhi Maria Barreto,Antônio Luiz Pinho Ribeiro,Harlan M. Krumholz,Evangelos K. Oikonomou,Rohan Khera
出处
期刊:JAMA Cardiology [American Medical Association]
被引量:8
标识
DOI:10.1001/jamacardio.2025.0492
摘要

Importance Despite the availability of disease-modifying therapies, scalable strategies for heart failure (HF) risk stratification remain elusive. Portable devices capable of recording single-lead electrocardiograms (ECGs) may enable large-scale community-based risk assessment. Objective To evaluate whether an artificial intelligence (AI) algorithm can predict HF risk from noisy single-lead ECGs. Design, Setting, and Participants A retrospective cohort study of individuals without HF at baseline was conducted among individuals with conventionally obtained outpatient ECGs in the integrated Yale New Haven Health System (YNHHS) and prospective population-based cohorts of the UK Biobank (UKB) and the Brazilian Longitudinal Study of Adult Health (ELSA-Brasil). Data analysis was performed from September 2023 to February 2025. Exposure AI-ECG–defined risk of left ventricular systolic dysfunction (LVSD). Main Outcomes and Measures Among individuals with ECGs, lead I ECGs were isolated and a noise-adapted AI-ECG model (to simulate ECG signals from wearable devices) trained to identify LVSD was deployed. The association of the model probability with new-onset HF, defined as the first HF hospitalization, was evaluated. The discrimination of AI-ECG was compared against 2 risk scores for new-onset HF (Pooled Cohort Equations to Prevent Heart Failure [PCP-HF] and Predicting Risk of Cardiovascular Disease Events [PREVENT] equations) using the Harrel C statistic, integrated discrimination improvement, and net reclassification improvement. Results There were 192 667 YNHHS patients (median [IQR] age, 56 [41-69] years; 111 181 women [57.7%]), 42 141 UKB participants (median [IQR] age, 65 [59-71] years; 21 795 women [51.7%]), and 13 454 ELSA-Brasil participants (median [IQR] age, 51 [45-58] years; 7348 women [54.6%]) with baseline ECGs. A total of 3697 (1.9%) developed HF in YNHHS over a median (IQR) of 4.6 (2.8-6.6) years, 46 (0.1%) in UKB over a median (IQR) of 3.1 (2.1-4.5) years, and 31 (0.2%) in ELSA-Brasil over a median (IQR) of 4.2 (3.7-4.5) years. A positive AI-ECG screening result for LVSD was associated with a 3- to 7-fold higher risk for HF, and each 0.1 increment in the model probability was associated with a 27% to 65% higher hazard across cohorts, independent of age, sex, comorbidities, and competing risk of death. AI-ECG’s discrimination for new-onset HF was 0.723 (95% CI, 0.694-0.752) in YNHHS, 0.736 (95% CI, 0.606-0.867) in UKB, and 0.828 (95% CI, 0.692-0.964) in ELSA-Brasil. Across cohorts, incorporating AI-ECG predictions alongside PCP-HF and PREVENT equations was associated with a higher Harrel C statistic (difference in addition to PCP-HF, 0.080-0.107; difference in addition to PREVENT, 0.069-0.094). AI-ECG had an integrated discrimination improvement of 0.091 to 0.205 vs PCP-HF and 0.068 to 0.192 vs PREVENT; it had a net reclassification improvement of 18.2% to 47.2% vs PCP-HF and 11.8% to 47.5% vs PREVENT. Conclusions and Relevance Across multinational cohorts, a noise-adapted AI-ECG model estimated HF risk using lead I ECGs, suggesting a potential HF risk-stratification strategy requiring prospective study using wearable and portable ECG devices.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
zeppeli完成签到,获得积分20
1秒前
2秒前
勤恳绝施完成签到 ,获得积分10
2秒前
2秒前
123发布了新的文献求助10
3秒前
酷炫的尔丝完成签到 ,获得积分10
3秒前
4秒前
wanci应助五条悟的手指采纳,获得10
4秒前
赘婿应助俏皮的笑容采纳,获得10
6秒前
欢呼的小懒虫完成签到,获得积分10
6秒前
6秒前
Owen应助爱马仕采纳,获得10
6秒前
丁禹彤完成签到,获得积分10
6秒前
7秒前
7秒前
淡然青寒完成签到,获得积分10
7秒前
8秒前
KingTiger发布了新的文献求助10
9秒前
李健的小迷弟应助123采纳,获得10
9秒前
King16发布了新的文献求助10
10秒前
swan完成签到 ,获得积分10
11秒前
式微给式微的求助进行了留言
11秒前
马克完成签到,获得积分10
12秒前
青年才俊发布了新的文献求助10
12秒前
兔子发布了新的文献求助10
12秒前
yu完成签到,获得积分10
12秒前
12秒前
KKKZ完成签到,获得积分10
14秒前
14秒前
14秒前
666发布了新的文献求助10
14秒前
温暖的蘑菇完成签到,获得积分20
14秒前
早睡一哥完成签到,获得积分10
15秒前
16秒前
彩色鹏煊发布了新的文献求助10
17秒前
tbdyc完成签到,获得积分10
17秒前
123完成签到,获得积分20
18秒前
19秒前
东都哈士奇完成签到,获得积分10
19秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
PARLOC2001: The update of loss containment data for offshore pipelines 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
Constitutional and Administrative Law 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5264178
求助须知:如何正确求助?哪些是违规求助? 4424447
关于积分的说明 13773074
捐赠科研通 4299589
什么是DOI,文献DOI怎么找? 2359124
邀请新用户注册赠送积分活动 1355370
关于科研通互助平台的介绍 1316708