亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Artificial Intelligence–Enabled Prediction of Heart Failure Risk From Single-Lead Electrocardiograms

医学 心力衰竭 内科学 队列 前瞻性队列研究 弗雷明翰风险评分 人口 心脏病学 疾病 环境卫生
作者
Lovedeep S Dhingra,Arya Aminorroaya,Aline F Pedroso,Akshay Khunte,Veer Sangha,Daniel McIntyre,Clara K Chow,Folkert W. Asselbergs,Luísa Campos Caldeira Brant,Sandhi Maria Barreto,Antônio Luiz Pinho Ribeiro,Harlan M. Krumholz,Evangelos K. Oikonomou,Rohan Khera
出处
期刊:JAMA Cardiology [American Medical Association]
标识
DOI:10.1001/jamacardio.2025.0492
摘要

Importance Despite the availability of disease-modifying therapies, scalable strategies for heart failure (HF) risk stratification remain elusive. Portable devices capable of recording single-lead electrocardiograms (ECGs) may enable large-scale community-based risk assessment. Objective To evaluate whether an artificial intelligence (AI) algorithm can predict HF risk from noisy single-lead ECGs. Design, Setting, and Participants A retrospective cohort study of individuals without HF at baseline was conducted among individuals with conventionally obtained outpatient ECGs in the integrated Yale New Haven Health System (YNHHS) and prospective population-based cohorts of the UK Biobank (UKB) and the Brazilian Longitudinal Study of Adult Health (ELSA-Brasil). Data analysis was performed from September 2023 to February 2025. Exposure AI-ECG–defined risk of left ventricular systolic dysfunction (LVSD). Main Outcomes and Measures Among individuals with ECGs, lead I ECGs were isolated and a noise-adapted AI-ECG model (to simulate ECG signals from wearable devices) trained to identify LVSD was deployed. The association of the model probability with new-onset HF, defined as the first HF hospitalization, was evaluated. The discrimination of AI-ECG was compared against 2 risk scores for new-onset HF (Pooled Cohort Equations to Prevent Heart Failure [PCP-HF] and Predicting Risk of Cardiovascular Disease Events [PREVENT] equations) using the Harrel C statistic, integrated discrimination improvement, and net reclassification improvement. Results There were 192 667 YNHHS patients (median [IQR] age, 56 [41-69] years; 111 181 women [57.7%]), 42 141 UKB participants (median [IQR] age, 65 [59-71] years; 21 795 women [51.7%]), and 13 454 ELSA-Brasil participants (median [IQR] age, 51 [45-58] years; 7348 women [54.6%]) with baseline ECGs. A total of 3697 (1.9%) developed HF in YNHHS over a median (IQR) of 4.6 (2.8-6.6) years, 46 (0.1%) in UKB over a median (IQR) of 3.1 (2.1-4.5) years, and 31 (0.2%) in ELSA-Brasil over a median (IQR) of 4.2 (3.7-4.5) years. A positive AI-ECG screening result for LVSD was associated with a 3- to 7-fold higher risk for HF, and each 0.1 increment in the model probability was associated with a 27% to 65% higher hazard across cohorts, independent of age, sex, comorbidities, and competing risk of death. AI-ECG’s discrimination for new-onset HF was 0.723 (95% CI, 0.694-0.752) in YNHHS, 0.736 (95% CI, 0.606-0.867) in UKB, and 0.828 (95% CI, 0.692-0.964) in ELSA-Brasil. Across cohorts, incorporating AI-ECG predictions alongside PCP-HF and PREVENT equations was associated with a higher Harrel C statistic (difference in addition to PCP-HF, 0.080-0.107; difference in addition to PREVENT, 0.069-0.094). AI-ECG had an integrated discrimination improvement of 0.091 to 0.205 vs PCP-HF and 0.068 to 0.192 vs PREVENT; it had a net reclassification improvement of 18.2% to 47.2% vs PCP-HF and 11.8% to 47.5% vs PREVENT. Conclusions and Relevance Across multinational cohorts, a noise-adapted AI-ECG model estimated HF risk using lead I ECGs, suggesting a potential HF risk-stratification strategy requiring prospective study using wearable and portable ECG devices.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
灵巧山菡发布了新的文献求助10
5秒前
科研通AI2S应助科研通管家采纳,获得10
5秒前
上官若男应助科研通管家采纳,获得10
5秒前
6秒前
wanci应助bybyby采纳,获得10
7秒前
归海听荷发布了新的文献求助10
13秒前
14秒前
狸宝的小果子完成签到 ,获得积分10
15秒前
Parotodus完成签到 ,获得积分10
16秒前
19秒前
所所应助shanghe采纳,获得10
23秒前
思源应助corEEgg采纳,获得10
31秒前
尹汉通关注了科研通微信公众号
31秒前
灵巧山菡完成签到,获得积分20
35秒前
科研通AI5应助醉熏的破茧采纳,获得10
36秒前
38秒前
尹汉通发布了新的文献求助10
42秒前
可靠从云完成签到 ,获得积分10
42秒前
ymr完成签到 ,获得积分10
43秒前
47秒前
49秒前
找文献完成签到 ,获得积分10
53秒前
哈鲁完成签到,获得积分10
54秒前
54秒前
julia发布了新的文献求助10
54秒前
56秒前
56秒前
绝对草草完成签到,获得积分10
57秒前
fiona完成签到,获得积分10
58秒前
58秒前
哈鲁发布了新的文献求助10
1分钟前
研友_VZG7GZ应助小琦笨蛋采纳,获得10
1分钟前
gincle完成签到 ,获得积分10
1分钟前
李大白完成签到 ,获得积分10
1分钟前
柯语雪完成签到 ,获得积分10
1分钟前
SciGPT应助Cuisine采纳,获得10
1分钟前
二马三乡完成签到 ,获得积分10
1分钟前
共享精神应助闪闪的夜柳采纳,获得30
1分钟前
1分钟前
linjane完成签到,获得积分10
1分钟前
高分求助中
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 2500
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 1370
Future Approaches to Electrochemical Sensing of Neurotransmitters 1000
生物降解型栓塞微球市场(按产品类型、应用和最终用户)- 2030 年全球预测 1000
壮语核心名词的语言地图及解释 900
Digital predistortion of memory polynomial systems using direct and indirect learning architectures 500
Canon of Insolation and the Ice-age Problem 380
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 物理 内科学 计算机科学 纳米技术 复合材料 化学工程 遗传学 基因 物理化学 催化作用 光电子学 量子力学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3916561
求助须知:如何正确求助?哪些是违规求助? 3462008
关于积分的说明 10920329
捐赠科研通 3189405
什么是DOI,文献DOI怎么找? 1762970
邀请新用户注册赠送积分活动 853194
科研通“疑难数据库(出版商)”最低求助积分说明 793732