Machine Learning and Structural Dynamics-Based Approach to Reveal Molecular Mechanism of PTEN Missense Mutations Shared by Cancer and Autism Spectrum Disorder

PTEN公司 错义突变 自闭症谱系障碍 机制(生物学) 遗传学 突变 计算生物学 自闭症 生物 癌症研究 心理学 基因 发展心理学 PI3K/AKT/mTOR通路 物理 信号转导 量子力学
作者
Miao Yang,Jingran Wang,Ziyun Zhou,Wentian Li,Gennady M. Verkhivker,Fei Xiao,Guang Hu
出处
期刊:Journal of Chemical Information and Modeling [American Chemical Society]
标识
DOI:10.1021/acs.jcim.5c00134
摘要

Missense mutations in oncogenic proteins that are concurrently associated with neurodevelopmental disorders have garnered significant attention. Phosphatase and tensin homologue (PTEN) serves as a paradigmatic model for mapping its mutational landscape and identifying genotypic predictors of distinct phenotypic outcomes, including cancer and autism spectrum disorder (ASD). Despite extensive research into the genotype-phenotype correlations of PTEN mutations, the mechanisms underlying the dual association of specific PTEN mutations with both cancer and ASD (PTEN-cancer/ASD mutations) remain elusive. This study introduces an integrative approach that combines machine learning (ML) with structural dynamics to elucidate the molecular effects of PTEN-cancer/ASD mutations. Analysis of biophysical and network-biology-based signatures reveals a complex energetic and functional landscape. Subsequently, an ML model and corresponding integrated score were developed to classify and predict PTEN-cancer/ASD mutations, underscoring the significance of protein dynamics in predicting cellular phenotypes. Further molecular dynamics simulations demonstrated that PTEN-cancer/ASD mutations induce dynamic alterations characterized by open conformational changes restricted to the P loop and coupled with interdomain allosteric regulation. This research aims to enhance the genotypic and phenotypic understanding of PTEN-cancer/ASD mutations through an interpretable ML model integrated with structural dynamics analysis. By identifying shared mechanisms between cancer and ASD, the findings pave the way for the development of novel therapeutic strategies.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ALU完成签到 ,获得积分10
2秒前
3秒前
希望天下0贩的0应助didi采纳,获得30
3秒前
百里声声笑完成签到 ,获得积分10
3秒前
3秒前
今后应助min采纳,获得10
3秒前
4秒前
Ava应助称心不尤采纳,获得10
4秒前
BL发布了新的文献求助10
5秒前
5秒前
8秒前
8秒前
8秒前
榴莲酥不要榴莲完成签到,获得积分10
9秒前
桐桐应助栀子采纳,获得10
9秒前
aa发布了新的文献求助10
10秒前
爱与和平发布了新的文献求助10
10秒前
小猫咪发布了新的文献求助10
11秒前
共享精神应助张潇潇采纳,获得10
11秒前
11秒前
wsy1234完成签到,获得积分20
11秒前
12秒前
蔡雯完成签到,获得积分10
12秒前
13秒前
豆豆关注了科研通微信公众号
14秒前
搜集达人应助粥粥卷采纳,获得10
14秒前
满怀完成签到,获得积分10
16秒前
min发布了新的文献求助10
16秒前
闪闪未来完成签到,获得积分20
17秒前
19秒前
20秒前
23秒前
23秒前
24秒前
24秒前
24秒前
粥粥卷发布了新的文献求助10
26秒前
张潇潇发布了新的文献求助10
26秒前
FashionBoy应助小浪浪采纳,获得10
27秒前
27秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
One Man Talking: Selected Essays of Shao Xunmei, 1929–1939 (PDF!) 1000
Technologies supporting mass customization of apparel: A pilot project 450
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
Walking a Tightrope: Memories of Wu Jieping, Personal Physician to China's Leaders 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3787285
求助须知:如何正确求助?哪些是违规求助? 3332896
关于积分的说明 10258130
捐赠科研通 3048309
什么是DOI,文献DOI怎么找? 1673086
邀请新用户注册赠送积分活动 801616
科研通“疑难数据库(出版商)”最低求助积分说明 760303