Confidence-Aware Multimodal Learning for Trustworthy Fake News Detection

可信赖性 计算机科学 假新闻 人工智能 机器学习 计算机安全 互联网隐私
作者
Shoumeng Ge,Ying Chen
出处
期刊:Informs Journal on Computing
标识
DOI:10.1287/ijoc.2024.0655
摘要

With the rapid growth of social media, fake news has been widespread. Recent studies have focused on using multimodal information to improve the accuracy of fake news detection. However, there are two issues that have been ignored. The first is that existing methods have not seriously considered the effectiveness of multimodal semantic information. Blindly using all the semantic information of modalities for multimodal fusion would introduce noise or irrelevant information to the results. The second is that existing multimodal fake news detection models have not taken into account the reliability of their output. Although post hoc confidence calibration methods can be directly applied to existing models to improve the trustworthiness of the detection results, they lack theoretical guarantees for their performance. Regarding these, we develop a confidence-aware multimodal learning framework for trustworthy fake news detection with the following two main technical contributions: (a) we propose a new fusion module that effectively utilizes the multimodal information, and (b) we introduce a new post hoc confidence calibration method with theoretical guarantees. In the experiments, we apply the proposed framework to three public data sets. The results demonstrate that our framework outperforms existing fake news detection models. Moreover, our post hoc calibration method performs better than the state-of-the-art ones. In addition, we conduct a comprehensive discussion to show the advantages and properties of our proposed framework and calibration method. History: This paper has been accepted by Kaushik Dutta for the Special Issue on the Responsible AI and Data Science for Social Good. Funding: Financial support from the National Natural Science Foundation of China [Grants 72121001, 72101066, and 72131005] as well as the Heilongjiang Natural Science Excellent Youth Fund [Grant YQ2022G004], is gratefully acknowledged. Supplemental Material: The software that supports the findings of this study is available within the paper and its Supplemental Information ( https://pubsonline.informs.org/doi/suppl/10.1287/ijoc.2024.0655 ) as well as from the IJOC GitHub software repository ( https://github.com/INFORMSJoC/2024.0655 ). The complete IJOC Software and Data Repository is available at https://informsjoc.github.io/ .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
AI imaging发布了新的文献求助10
1秒前
傲慢葫芦发布了新的文献求助10
2秒前
乌拉挂机发布了新的文献求助10
2秒前
善学以致用应助yiyi采纳,获得10
2秒前
3秒前
Orange应助Duke采纳,获得10
3秒前
4秒前
4秒前
jjj应助科研通管家采纳,获得20
4秒前
Akim应助科研通管家采纳,获得10
4秒前
脑洞疼应助科研通管家采纳,获得10
5秒前
hh应助科研通管家采纳,获得10
5秒前
Akim应助科研通管家采纳,获得10
5秒前
震甫应助科研通管家采纳,获得10
5秒前
大模型应助科研通管家采纳,获得10
5秒前
天天快乐应助科研通管家采纳,获得10
5秒前
深情安青应助科研通管家采纳,获得10
5秒前
hh应助科研通管家采纳,获得10
5秒前
大模型应助科研通管家采纳,获得10
6秒前
阿飘应助科研通管家采纳,获得10
6秒前
核桃应助科研通管家采纳,获得10
6秒前
SciGPT应助科研通管家采纳,获得10
6秒前
Flyiny发布了新的文献求助10
6秒前
深情安青应助科研通管家采纳,获得10
6秒前
震甫应助科研通管家采纳,获得10
6秒前
Ava应助科研通管家采纳,获得10
6秒前
英俊的铭应助科研通管家采纳,获得10
6秒前
6秒前
列子发布了新的文献求助20
6秒前
6秒前
6秒前
情怀应助科研通管家采纳,获得10
6秒前
6秒前
6秒前
6秒前
6秒前
锅锅发布了新的文献求助10
7秒前
章瑞初发布了新的文献求助10
8秒前
镜泠月完成签到,获得积分10
11秒前
七友完成签到,获得积分10
12秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 1370
Secondary Ion Mass Spectrometry: Basic Concepts, Instrumental Aspects, Applications and Trends 1000
Comparison of adverse drug reactions of heparin and its derivates in the European Economic Area based on data from EudraVigilance between 2017 and 2021 500
[Relativity of the 5-year follow-up period as a criterion for cured cancer] 500
Statistical Analysis of fMRI Data, second edition (Mit Press) 2nd ed 500
Sellars and Davidson in Dialogue 500
Huang‘s catheter ablation of cardiac arrthymias 5th edtion 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3942245
求助须知:如何正确求助?哪些是违规求助? 3487522
关于积分的说明 11043994
捐赠科研通 3217931
什么是DOI,文献DOI怎么找? 1778638
邀请新用户注册赠送积分活动 864370
科研通“疑难数据库(出版商)”最低求助积分说明 799388