成像体模
稳态自由进动成像
核磁共振
物理
稳态(化学)
磁共振成像
核医学
医学
化学
放射科
物理化学
作者
Ruoxun Zi,Robert R. Edelman,Christoph Maier,Mahesh Keerthivasan,Riccardo Lattanzi,Daniel K. Sodickson,Kai Tobias Block
标识
DOI:10.1097/rli.0000000000001185
摘要
Objectives Magnetization-prepared rapid gradient-echo (MP-RAGE) sequences are routinely acquired for brain exams, providing high conspicuity for enhancing lesions. Vessels, however, also appear bright, which can complicate the detection of small lesions. T1RESS (T1 relaxation-enhanced steady-state) sequences have been proposed as an alternative to MP-RAGE, offering improved lesion conspicuity and suppression of blood vessels. This work aims to evaluate the performance of radial T1RESS variants for motion-robust contrast-enhanced brain MRI. Materials and Methods Radial stack-of-stars sampling was implemented for steady-state free-precession–based rapid T1RESS acquisition with saturation recovery preparation. Three variants were developed using a balanced steady-state free-precession readout (bT1RESS), an unbalanced fast imaging steady precession (FISP) readout (uT1RESS-FISP), and an unbalanced reversed FISP readout (uT1RESS-PSIF). Image contrast was evaluated in numerical simulations and phantom experiments. The motion robustness of radial T1RESS was demonstrated with a motion phantom. Four patients and six healthy volunteers were scanned at 3 T and 0.55 T. Extensions were developed combining T1RESS with GRASP for dynamic imaging, with GRAPPA for accelerated scans, and with Dixon for fat/water separation. Results In simulations and phantom scans, uT1RESS-FISP provided higher signal intensity for regions with lower T1 values (<500 ms) compared with MP-RAGE. In motion experiments, radial uT1RESS-FISP showed fewer artifacts than MP-RAGE and Cartesian uT1RESS-FISP. In patients, both unbalanced uT1RESS variants provided higher lesion conspicuity than MP-RAGE. Blood vessels appeared bright with MP-RAGE, gray with uT1RESS-FISP, and dark with uT1RESS-PSIF. At 0.55 T, bT1RESS provided high signal-to-noise ratio T1-weighted images without banding artifacts. Lastly, dynamic T1RESS images with a temporal resolution of 10.14 seconds/frame were generated using the GRASP algorithm. Conclusions Radial T1RESS sequences offer improved lesion conspicuity and motion robustness and enable dynamic imaging for contrast-enhanced brain MRI. Both uT1RESS variants showed higher tumor-to-brain contrast than MP-RAGE and may find application as alternative techniques for imaging uncooperative patients with small brain lesions.
科研通智能强力驱动
Strongly Powered by AbleSci AI