材料科学
析氧
双金属片
分解水
化学工程
无定形固体
纳米棒
催化作用
曲面重建
纳米技术
结晶学
金属
电化学
化学
物理化学
冶金
光催化
生物化学
几何学
数学
曲面(拓扑)
工程类
电极
作者
Meilian Tu,Zhixiao Zhu,Yanxiang He,Selvam Mathi,Jianqiu Deng,Mu. Naushad,Yongchao Huang,Yang Hu,Muhammad‐Sadeeq Balogun
出处
期刊:Small
[Wiley]
日期:2025-03-13
标识
DOI:10.1002/smll.202500687
摘要
Abstract Transition metal selenides (TMSe) are promising oxygen evolution reaction (OER) electrocatalysts but act as precursors rather than the actual active phase, transforming into amorphous oxyhydroxides during OER. This transformation, along with the formation of selenium oxyanions and unstable heterointerfaces, complicates the structure‐activity relationship and reduces stability. This work introduces novel “layered‐hierarchical dual lattice strain engineering” to inhibit the surface reconstruction of Ni x Se by modulating both the nickel foam (NF) substrate with Mo 2 N nanosheets (NM) and the Ni x Se nanorods‐nanosheets catalytic layer (NiSe‐Ni 0.85 Se‐NiO, NSN) with ultrafast interfacial bimetallic amorphous NiFeOOH coating, achieving the optimized NM/NSN/NiFeOOH configuration. The NM substrate induces lattice strain, enhancing OER activity by improving electron transport and adhesion, while the NiFeOOH coating induces additional lattice strain, mitigating the surface reconstruction and oxidative degradation, reinforcing structural integrity. The NM/NSN/NiFeOOH catalyst demonstrates exceptional OER performance with low overpotentials of 208 mV@10 mA cm −2 and outstanding stability over 100 h at 100 mA cm −2 in alkaline freshwater and seawater. Theoretical analysis shows that NiFeOOH effectively prevents surface reconstruction and oxidative degradation by preserving Ni sites for optimal OER intermediate interactions while stabilizing the electronic environment. This work provides a novel strategy for enhancing the OER stability of TMSe and beyond.
科研通智能强力驱动
Strongly Powered by AbleSci AI