CAIINET: Neural network based on contextual attention and information interaction mechanism for depression detection

计算机科学 召回 机制(生物学) 人工神经网络 水准点(测量) 互动性 人工智能 社会化媒体 精确性和召回率 机器学习 数据挖掘 心理学 认知心理学 万维网 哲学 大地测量学 认识论 地理
作者
Li Zhou,Zhenyu Liu,Xiaoyan Yuan,Zixuan Shangguan,Yutong Li,Bin Hu
出处
期刊:Digital Signal Processing [Elsevier BV]
卷期号:137: 103986-103986 被引量:8
标识
DOI:10.1016/j.dsp.2023.103986
摘要

Depression is a globally widespread psychological disorder that has a serious impact on the physical and mental health of patients. Currently, depression detection methods based on physiological signals are widely used, but the limitation is that physiological signals are not easy to collect. With the rapid development of social media, vlogs posted by users not only reflect the current emotional state, but also provide the possibility of early depression detection, and the data are more easily obtained. Therefore, early depression detection based on social media has become a hot research topic. However, due to the large and diverse social data that users may publish, how to effectively extract critical temporal information and fuse multiple modal data becomes an urgent problem to be solved. To realize the early detection of depression on vlog data, we propose a neural network based on contextual attention and information interaction mechanism (CAIINET). CAIINET is composed of three core modules: BiLSTM based on contextual attention module (CAM-BilSTM), local information fusion module (LIFM), and global information interaction module (GIIM). The CAM-BilSTM model captures important acoustic and visual features at critical time points. The LIFM and GIIM modules extract the relevance and interactivity between extracted acoustic and visual features at local and global scales. Experiments are conducted on the D-Vlog dataset, and the CAIINET model achieves 66.56%, 66.98% and 66.55% for weighted average precision, recall and F1 score, respectively, outperforming the ten benchmark models. The experimental results show that the CAIINET model has good depression detection capability, and furthermore, the effectiveness of the three submodules of the CAIINET model is investigated by the ablation experiment.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
执着听兰完成签到,获得积分10
2秒前
ambition完成签到,获得积分10
2秒前
爆米花应助vic303采纳,获得10
3秒前
4秒前
5秒前
韩梦完成签到,获得积分10
5秒前
Owen应助skoch采纳,获得10
5秒前
7秒前
王王完成签到,获得积分20
8秒前
nenoaowu发布了新的文献求助10
10秒前
5wei完成签到,获得积分10
11秒前
潇洒的小丸子完成签到,获得积分10
12秒前
12秒前
ambition发布了新的文献求助10
15秒前
15秒前
小茂完成签到,获得积分10
17秒前
脑洞疼应助nenoaowu采纳,获得10
18秒前
zy3637完成签到 ,获得积分10
18秒前
共享精神应助青栞采纳,获得10
19秒前
WFLLL发布了新的文献求助10
20秒前
飞翔的荷兰人完成签到,获得积分10
22秒前
老鼠咬了我的苹果完成签到,获得积分20
27秒前
大个应助潇洒的小丸子采纳,获得10
28秒前
28秒前
等待亦旋完成签到,获得积分10
29秒前
十二驳回了1111应助
29秒前
30秒前
hnxxangel完成签到,获得积分10
33秒前
科研大白发布了新的文献求助10
33秒前
文献互助1完成签到 ,获得积分10
33秒前
34秒前
Doraemon发布了新的文献求助10
34秒前
34秒前
Lyl完成签到 ,获得积分10
36秒前
dennisysz发布了新的文献求助10
36秒前
不知道发布了新的文献求助10
39秒前
39秒前
39秒前
科研通AI5应助小子采纳,获得30
39秒前
40秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 3000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3777369
求助须知:如何正确求助?哪些是违规求助? 3322759
关于积分的说明 10211514
捐赠科研通 3038087
什么是DOI,文献DOI怎么找? 1667104
邀请新用户注册赠送积分活动 797971
科研通“疑难数据库(出版商)”最低求助积分说明 758103