Deep Adaptive Quadruplet Hashing With Probability Sampling for Large-Scale Image Retrieval

计算机科学 二进制代码 散列函数 人工智能 模式识别(心理学) 图像检索 动态完美哈希 判别式 通用哈希 最近邻搜索 二进制数 哈希表 数学 图像(数学) 双重哈希 算术 计算机安全
作者
Qibing Qin,Lei Huang,Kezhen Xie,Zhiqiang Wei,Chengduan Wang,Wenfeng Zhang
出处
期刊:IEEE Transactions on Circuits and Systems for Video Technology [Institute of Electrical and Electronics Engineers]
卷期号:33 (12): 7914-7927 被引量:12
标识
DOI:10.1109/tcsvt.2023.3281868
摘要

With the preferable efficiency in storage and computation, hashing has shown potential application in large-scale multimedia retrieval. Compared with traditional hashing algorithms using hand-crafted characteristics, deep hashing inherits the representational capacity of deep neural networks to jointly learn semantic features and hash functions, encoding raw data into compact binary codes with significant discrimination. Generally, most of the current multi-wise hashing methods view the similarity margins between image pairs as constant values in training process. When the distance between sample pairs exceeds the fixed margin, the hashing network would not learn anything. Besides, available hashing methods commonly introduce the random sampling strategy to build training batches and ignore the sample distribution, which is harmful to parameter optimization. In this paper, we propose a novel Deep Adaptive Quadruplet Hashing with probability sampling (DAQH) for discriminative binary code learning. Specifically, with exploring the distribution relationship of raw samples, a non-uniform probability sampling strategy is proposed to build more informative and representative training batches, while maintaining the diversity of training samples. By introducing the prior similarity of sample pairs to calculate corresponding margins, an adaptive margin quadruplet loss is designed to dynamically preserve the underlying semantic relationships with its neighbors. To tune the attributes of binary codes, by combining quadruple regularization and orthogonality optimization, binary code constraint is developed to make the learned embedding with significant discrimination. Extensive experimental results on various benchmark datasets demonstrate our proposed DAQH framework achieves state-of-the-art visual similarity search performance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Loik发布了新的文献求助10
刚刚
1秒前
3秒前
3秒前
liudy发布了新的文献求助10
4秒前
李斌关注了科研通微信公众号
4秒前
漱石发布了新的文献求助10
4秒前
bkagyin应助orchid采纳,获得10
7秒前
明理的青完成签到,获得积分10
7秒前
hyg发布了新的文献求助10
8秒前
董研发布了新的文献求助20
8秒前
10秒前
10秒前
10秒前
12秒前
12秒前
12秒前
bkagyin应助醉酒笑红尘采纳,获得10
12秒前
hu完成签到,获得积分10
12秒前
13秒前
穆妮热发布了新的文献求助10
16秒前
Captain发布了新的文献求助10
16秒前
牛牛发布了新的文献求助10
17秒前
李若风发布了新的文献求助10
17秒前
科研小破白菜完成签到,获得积分10
17秒前
wanci应助桑葚啊采纳,获得10
18秒前
18秒前
18秒前
22秒前
科研通AI5应助孤独的问凝采纳,获得10
22秒前
dileibing发布了新的文献求助30
23秒前
脑洞疼应助染东采纳,获得10
24秒前
orchid发布了新的文献求助10
25秒前
ttracc完成签到 ,获得积分10
25秒前
26秒前
泽栋发布了新的文献求助10
28秒前
29秒前
30秒前
31秒前
31秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Mobilization, center-periphery structures and nation-building 600
Technologies supporting mass customization of apparel: A pilot project 450
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3792160
求助须知:如何正确求助?哪些是违规求助? 3336436
关于积分的说明 10280990
捐赠科研通 3053122
什么是DOI,文献DOI怎么找? 1675474
邀请新用户注册赠送积分活动 803469
科研通“疑难数据库(出版商)”最低求助积分说明 761414