Wavelet Transform, Reconstructed Phase Space, and Deep Learning Neural Networks for EEG-Based Schizophrenia Detection

人工智能 脑电图 计算机科学 模式识别(心理学) 精神分裂症(面向对象编程) 小波 人工神经网络 深度学习 小波变换 连续小波变换 语音识别 离散小波变换 心理学 神经科学 程序设计语言
作者
Amjed Al Fahoum,Ala’a Zyout
出处
期刊:International Journal of Neural Systems [World Scientific]
卷期号:34 (09) 被引量:10
标识
DOI:10.1142/s0129065724500461
摘要

This study proposes an innovative expert system that uses exclusively EEG signals to diagnose schizophrenia in its early stages. For diagnosing psychiatric/neurological disorders, electroencephalogram (EEG) testing is considered a financially viable, safe, and reliable alternative. Using the reconstructed phase space (RPS) and the continuous wavelet transform, the researchers maximized the differences between the EEG nonstationary signals of normal and schizophrenia individuals, which cannot be observed in the time, frequency, or time-frequency domains. This reveals significant information, highlighting more distinguishable features. Then, a deep learning network was trained to enhance the accuracy of the resulting image classification. The algorithm's efficacy was confirmed through three distinct methods: employing 70% of the dataset for training, 15% for validation, and the remaining 15% for testing. This was followed by a 5-fold cross-validation technique and a leave-one-out classification approach. Each method was iterated 100 times to ascertain the algorithm's robustness. The performance metrics derived from these tests - accuracy, precision, sensitivity, F1 score, Matthews correlation coefficient, and Kappa - indicated remarkable outcomes. The algorithm demonstrated steady performance across all evaluation strategies, underscoring its relevance and reliability. The outcomes validate the system's accuracy, precision, sensitivity, and robustness by showcasing its capability to autonomously differentiate individuals diagnosed with schizophrenia from those in a state of normal health.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
手中的樱花完成签到 ,获得积分10
2秒前
3秒前
大力沛萍发布了新的文献求助10
6秒前
勤恳立轩完成签到,获得积分10
8秒前
科研通AI5应助没有熬夜采纳,获得30
8秒前
红黄蓝发布了新的文献求助30
8秒前
hzx发布了新的文献求助10
9秒前
11秒前
怡然洋葱发布了新的文献求助10
11秒前
12秒前
13秒前
阔达苡完成签到,获得积分10
13秒前
jinyu完成签到,获得积分10
13秒前
WangT发布了新的文献求助10
16秒前
无花果应助梓mua采纳,获得10
16秒前
16秒前
17秒前
孙傲发布了新的文献求助10
18秒前
田様应助susan采纳,获得30
19秒前
领导范儿应助李安全采纳,获得10
19秒前
Sherry99发布了新的文献求助10
19秒前
21秒前
21秒前
烟花应助hzx采纳,获得10
21秒前
Akim应助仁爱平文采纳,获得30
21秒前
初晨发布了新的文献求助10
21秒前
zy发布了新的文献求助10
24秒前
砍柴少年发布了新的文献求助10
25秒前
25秒前
zhuxf完成签到,获得积分10
26秒前
WangT完成签到,获得积分10
27秒前
梓mua发布了新的文献求助10
29秒前
思源应助那就再来一次采纳,获得10
30秒前
希望天下0贩的0应助sunrise采纳,获得10
31秒前
32秒前
Sherry99完成签到,获得积分10
33秒前
初晨完成签到,获得积分20
33秒前
黄建林完成签到,获得积分10
34秒前
孙傲完成签到,获得积分10
34秒前
36秒前
高分求助中
(应助此贴封号)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
F-35B V2.0 How to build Kitty Hawk's F-35B Version 2.0 Model 2500
줄기세포 생물학 1000
The Netter Collection of Medical Illustrations: Digestive System, Volume 9, Part III - Liver, Biliary Tract, and Pancreas (3rd Edition) 600
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
2025-2031全球及中国蛋黄lgY抗体行业研究及十五五规划分析报告(2025-2031 Global and China Chicken lgY Antibody Industry Research and 15th Five Year Plan Analysis Report) 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4479398
求助须知:如何正确求助?哪些是违规求助? 3936880
关于积分的说明 12213231
捐赠科研通 3591569
什么是DOI,文献DOI怎么找? 1975047
邀请新用户注册赠送积分活动 1012217
科研通“疑难数据库(出版商)”最低求助积分说明 905566