Machine learning optimization for enhanced biomass-coal co-gasification

生物量(生态学) 煤气化 工艺工程 废物管理 生物质气化 环境科学 计算机科学 工程类 生物燃料 生物 农学
作者
Junting Pan,Hossein Shahbeik,Alireza Shafizadeh,Shahin Rafiee,Milad Golvirdizadeh,Seyyed Alireza Ghafarian Nia,Hossein Mobli,Yadong Yang,Guilong Zhang,Meisam Tabatabaei,Mortaza Aghbashlo
出处
期刊:Renewable Energy [Elsevier BV]
卷期号:229: 120772-120772
标识
DOI:10.1016/j.renene.2024.120772
摘要

The co-gasification of biomass feedstocks with coal offers a promising approach to enhancing syngas quality while mitigating the environmental impacts of traditional coal gasification. However, experimental determination of the optimal biomass/coal blending ratio and operational parameters is often resource-intensive. To address this challenge, modeling techniques are invaluable for optimizing biomass-coal co-gasification. This study aims to develop a machine learning (ML) model to optimize biomass-coal co-gasification. Additionally, an evolutionary algorithm is employed for multi-objective optimization, targeting maximum H2 production and optimal performance for the Fischer-Tropsch process. A comprehensive dataset from reputable literature sources, covering a wide range of biomass/coal blending ratios under various process conditions, was compiled. The dataset underwent statistical analysis, and mechanistic discussions were included to elucidate the effects of each parameter on the process. Among the four ML models applied, gradient boosting regression demonstrated the best performance during the testing phase, achieving an R2 exceeding 0.92 and MAE and RMSE values lower than 2.92 and 3.39, respectively. For H2 production, optimal results were observed with steam yields and temperatures near 1480 °C, while air and temperatures around 1570 °C yielded the best outcomes for the Fischer-Tropsch process. A biomass/coal blending ratio between 50 % and 70 % was found to be suitable for almost all gasifying agents under both criteria. The process was also analyzed techno-economically based on optimal conditions, revealing that steam exhibits superior techno-economic performance compared to other gasifying agents.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小典发布了新的文献求助10
3秒前
昼夜本色完成签到 ,获得积分10
5秒前
蓝天小小鹰完成签到 ,获得积分10
7秒前
LEO完成签到,获得积分10
16秒前
小典完成签到,获得积分10
16秒前
amengptsd完成签到,获得积分10
17秒前
虚幻煎饼完成签到,获得积分10
18秒前
30秒前
shadow完成签到,获得积分10
34秒前
谭玲慧完成签到 ,获得积分10
36秒前
唐唐完成签到,获得积分10
37秒前
怕孤独的访云完成签到 ,获得积分10
38秒前
沉默的冬寒完成签到 ,获得积分10
40秒前
暖羊羊Y完成签到 ,获得积分10
40秒前
42秒前
53秒前
cdercder应助科研通管家采纳,获得10
54秒前
余味应助科研通管家采纳,获得10
54秒前
研友_VZG7GZ应助科研通管家采纳,获得10
54秒前
Jasper应助科研通管家采纳,获得10
54秒前
ayayaya完成签到 ,获得积分10
55秒前
行云流水完成签到,获得积分10
57秒前
肥宅小周发布了新的文献求助10
57秒前
gmc完成签到 ,获得积分10
58秒前
yyds发布了新的文献求助10
58秒前
1分钟前
k sir发布了新的文献求助10
1分钟前
cdercder应助猪猪hero采纳,获得10
1分钟前
科研通AI5应助肥宅小周采纳,获得10
1分钟前
1分钟前
虚幻煎饼关注了科研通微信公众号
1分钟前
忧伤的井发布了新的文献求助10
1分钟前
猪猪hero完成签到,获得积分10
1分钟前
兔兔完成签到 ,获得积分10
1分钟前
葫芦娃完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
香蕉觅云应助忧伤的井采纳,获得10
1分钟前
1分钟前
彩色菲鹰完成签到,获得积分10
1分钟前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 3000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3777682
求助须知:如何正确求助?哪些是违规求助? 3323099
关于积分的说明 10213003
捐赠科研通 3038447
什么是DOI,文献DOI怎么找? 1667382
邀请新用户注册赠送积分活动 798115
科研通“疑难数据库(出版商)”最低求助积分说明 758273