Direct observation of natural products bound to protein based on UHPLC-ESI-MS combined with molecular dynamics simulation

分子动力学 动力学(音乐) 化学 自然(考古学) 色谱法 计算机科学 计算化学 物理 生物 声学 古生物学
作者
Jinqi Yang,Xiaoxiang Hu,Yuanyuan Zhang,Lingyu Zhao,Chunlin Yue,Yuan Cao,Yangyang Zhang,Zhenwen Zhao
出处
期刊:Chinese Chemical Letters [Elsevier BV]
卷期号:: 110128-110128 被引量:1
标识
DOI:10.1016/j.cclet.2024.110128
摘要

The bioactive constituents found in natural products (NPs) are crucial in protein-ligand interactions and drug discovery. However, it is difficult to identify ligand molecules from complex NPs that specifically bind to target protein, which often requires time-consuming and labor-intensive processes such as isolation and enrichment. To address this issue, in this study we developed a method that combines ultra-high performance liquid chromatography-electrospray ionization-mass spectrometry (UHPLC-ESI-MS) with molecular dynamics (MD) simulation to identify and observe, rapidly and efficiently, the bioactive components in NPs that bind to specific protein target. In this method, a specific protein target was introduced online using a three-way valve to form a protein-ligand complex. The complex was then detected in real time using high-resolution MS to identify potential ligands. Based on our method, only 10 molecules from green tea (a representative natural product), including the commonly reported epigallocatechin gallate (EGCG) and epicatechin gallate (ECG), as well as the previously unreported eepicatechin (4β→8)-epigallocatechin 3-O-gallate (EC-EGCG) and eepiafzelechin 3-O-gallate-(4β→8)-epigallocatechin 3-O-gallate (EFG-EGCG), were screened out, which could form complexes with Aβ1-42 (a representative protein target), and could be potential ligands of Aβ1-42. Among of them, EC-EGCG demonstrated the highest binding free energy with Aβ1-42 (−68.54 ± 3.82 kcal/mol). On the other side, even though the caffeine had the highest signal among green tea extracts, it was not observed to form a complex with Aβ1-42. Compared to other methods such as affinity selection mass spectrometry (ASMS) and native MS, our method is easy to operate and interpret the data. Undoubtedly, it provides a new methodology for potential drug discovery in NPs, and will accelerate the research on screening ligands for specific proteins from complex NPs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
清爽访曼发布了新的文献求助10
1秒前
英吉利25发布了新的文献求助50
1秒前
Dr大壮发布了新的文献求助10
2秒前
3秒前
3秒前
3秒前
JamesPei应助快乐科研采纳,获得10
6秒前
脑洞疼应助梁颖采纳,获得10
7秒前
陶醉无敌发布了新的文献求助10
7秒前
9秒前
CCC完成签到,获得积分10
10秒前
胡老六完成签到,获得积分10
10秒前
11秒前
李健应助土豆炖牛腩采纳,获得10
12秒前
gayfall完成签到,获得积分10
13秒前
陶醉无敌完成签到,获得积分10
13秒前
枯木逢春完成签到,获得积分10
13秒前
阿飘发布了新的文献求助10
16秒前
19秒前
20秒前
子车茗应助科研通管家采纳,获得10
21秒前
子车茗应助科研通管家采纳,获得10
21秒前
子车茗应助科研通管家采纳,获得20
21秒前
子车茗应助科研通管家采纳,获得10
21秒前
无花果应助科研通管家采纳,获得10
21秒前
21秒前
21秒前
21秒前
22秒前
23秒前
yxdjzwx发布了新的文献求助10
23秒前
情怀应助生动初蓝采纳,获得10
23秒前
Chief完成签到,获得积分0
23秒前
23秒前
persist发布了新的文献求助10
23秒前
24秒前
殷超完成签到,获得积分0
25秒前
ChenXinrui关注了科研通微信公众号
25秒前
25秒前
fzy发布了新的文献求助10
26秒前
高分求助中
ФОРМИРОВАНИЕ АО "МЕЖДУНАРОДНАЯ КНИГА" КАК ВАЖНЕЙШЕЙ СИСТЕМЫ ОТЕЧЕСТВЕННОГО КНИГОРАСПРОСТРАНЕНИЯ 3000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 2500
Future Approaches to Electrochemical Sensing of Neurotransmitters 1000
Electron microscopy study of magnesium hydride (MgH2) for Hydrogen Storage 1000
Finite Groups: An Introduction 800
生物降解型栓塞微球市场(按产品类型、应用和最终用户)- 2030 年全球预测 500
Thermal Expansion of Solids (CINDAS Data Series on Material Properties, v. I-4) 470
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3906146
求助须知:如何正确求助?哪些是违规求助? 3451756
关于积分的说明 10866274
捐赠科研通 3177171
什么是DOI,文献DOI怎么找? 1755239
邀请新用户注册赠送积分活动 848710
科研通“疑难数据库(出版商)”最低求助积分说明 791226