DAM-Net: Flood detection from SAR imagery using differential attention metric-based vision transformers

大洪水 计算机视觉 遥感 变压器 人工智能 计算机科学 公制(单位) 环境科学 地理 工程类 电气工程 运营管理 考古 电压
作者
Tamer Saleh,Xingxing Weng,Shimaa Holail,Hao Chen,Gui-Song Xia
出处
期刊:Isprs Journal of Photogrammetry and Remote Sensing 卷期号:212: 440-453 被引量:14
标识
DOI:10.1016/j.isprsjprs.2024.05.018
摘要

Flood detection from synthetic aperture radar (SAR) imagery plays an important role in crisis and disaster management. Based on pre- and post-flood SAR images, flooded areas can be extracted by detecting changes of water bodies. Existing state-of-the-art change detection methods primarily target optical image pairs. The nature of SAR images, such as scarce visual information, similar backscatter signals, and ubiquitous speckle noise, pose great challenges to identifying water bodies and mining change features, thus resulting in unsatisfactory performance. Besides, the lack of large-scale annotated datasets hinders the development of accurate flood detection methods. In this paper, we focus on the difference between SAR image pairs and present a differential attention metric-based network (DAM-Net), to achieve flood detection. By introducing feature interaction during temporal-wise feature representation, we guide the model to focus on changes of interest rather than fully understanding the scene of the image. On the other hand, we devise a class token to capture high-level semantic information about water body changes, increasing the ability to distinguish water body changes and pseudo changes caused by similar signals or speckle noise. To better train and evaluate DAM-Net, we create a large-scale flood detection dataset using Sentinel-1 SAR imagery, namely S1GFloods. This dataset consists of 5,360 image pairs, covering 46 flood events during 2015–2022, and spanning 6 continents of the world. The experimental results on this dataset demonstrate that our method outperforms several advanced change detection methods. DAM-Net achieves 97.8% overall accuracy, 96.5% F1, and 93.2% IoU on the test set. Our dataset and code are available at https://github.com/Tamer-Saleh/S1GFlood-Detection.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
TGX发布了新的文献求助10
2秒前
he发布了新的文献求助10
3秒前
5秒前
林一完成签到,获得积分10
5秒前
BJJ完成签到,获得积分10
5秒前
loong完成签到,获得积分10
6秒前
Inanopig完成签到,获得积分10
9秒前
诸缘郡完成签到,获得积分10
9秒前
TGX完成签到,获得积分10
9秒前
林一发布了新的文献求助10
10秒前
天天快乐应助zzz采纳,获得10
10秒前
11秒前
顾矜应助幼稚园搞磕研采纳,获得10
11秒前
12秒前
666完成签到,获得积分10
13秒前
琪琪完成签到,获得积分10
14秒前
15秒前
田様应助he采纳,获得10
15秒前
独特的幻悲完成签到 ,获得积分10
17秒前
宝宝言兼发布了新的文献求助10
19秒前
木子木发布了新的文献求助10
19秒前
19秒前
浅色墨水发布了新的文献求助10
20秒前
冷静石头完成签到,获得积分10
20秒前
26秒前
27秒前
28秒前
魔幻的觅珍完成签到,获得积分10
29秒前
吨吨完成签到,获得积分10
30秒前
白晨浩发布了新的文献求助10
30秒前
31秒前
31秒前
烟花应助科研通管家采纳,获得10
32秒前
32秒前
Lucas应助科研通管家采纳,获得10
32秒前
pluto应助科研通管家采纳,获得10
32秒前
32秒前
32秒前
May应助科研通管家采纳,获得20
32秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 600
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3966458
求助须知:如何正确求助?哪些是违规求助? 3511940
关于积分的说明 11161056
捐赠科研通 3246726
什么是DOI,文献DOI怎么找? 1793483
邀请新用户注册赠送积分活动 874465
科研通“疑难数据库(出版商)”最低求助积分说明 804403