A coastal wetlands mapping approach of Yellow River Delta with a hierarchical classification and optimal feature selection framework

湿地 特征(语言学) 随机森林 特征选择 特征提取 遥感 计算机科学 环境科学 数据挖掘 模式识别(心理学) 人工智能 地理 生态学 语言学 生物 哲学
作者
Huaqiao Xing,Jingge Niu,Yongyu Feng,Dongyang Hou,Yan Wang,Zhiqiang Wang
出处
期刊:Catena [Elsevier BV]
卷期号:223: 106897-106897 被引量:39
标识
DOI:10.1016/j.catena.2022.106897
摘要

Wetlands play an important role in ecological health and sustainable development, their spatial distribution and explicit thematic information are crucial for developing management and conservation measures. The Yellow River Delta is an important coastal wetland reserve in China, its wetland types are complex and diverse, natural and artificial wetlands are easily confused, making refined classification more difficult. To address this challenge, we proposed a new wetland mapping approach by combing hierarchical classification framework (HCF) and optimal feature selection. First, inheritance-based multiscale segmentation was carried out to obtain object-oriented images, and decision tree classification was used for preliminarily identify wetland and non-wetland. Second, recursive feature elimination and cross-validation (RFECV) was used to select optimal features, which was then utilized for wetland refinement extraction by using random forest (RF) algorithm. The experiments were performed based on Sentinel-1, Sentinel-2 and NASADEM datasets. The results show that effective wetland classification features can be selected by using RFECV. The feature scores are as follows, red edge index > spectral features > vegetation/water body index > backscatter coefficient > topographic features > texture features > location feature > urban index > geometric feature. The overall accuracy and Kappa coefficient of the method in this paper are 92.36 % and 0.915, which are 14.62 % and 6.68 % higher than using only HCF or only RFECV. Compared with the GlobeLand30 and CAS_Wetlands datasets, the refinement of wetland mapping in this paper is higher. This study provides a new idea in methodological selection for wetland information extraction, and the resulting coastal wetland map can be used for sustainable management, ecological assessment and conservation of the Yellow River Delta.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
猫咪老师应助kannakaco采纳,获得30
1秒前
所所应助111采纳,获得10
5秒前
Fiona完成签到 ,获得积分10
5秒前
GS完成签到,获得积分10
6秒前
脑洞疼应助Ryan采纳,获得10
6秒前
LIUJIAWEI完成签到,获得积分10
7秒前
9秒前
Xieyusen完成签到,获得积分10
11秒前
丘比特应助连翘采纳,获得10
12秒前
xiaohanzai88完成签到,获得积分10
13秒前
上官若男应助呆萌的语芹采纳,获得50
17秒前
NexusExplorer应助Ryan采纳,获得10
18秒前
19秒前
GS发布了新的文献求助50
20秒前
坤坤发布了新的文献求助10
26秒前
幽凡完成签到 ,获得积分10
28秒前
30秒前
CodeCraft应助坤坤采纳,获得10
31秒前
32秒前
未知数完成签到,获得积分20
34秒前
关天木发布了新的文献求助10
34秒前
35秒前
36秒前
坤坤完成签到,获得积分10
37秒前
QL发布了新的文献求助10
38秒前
39秒前
CHENZHIHUA发布了新的文献求助10
39秒前
40秒前
小露发布了新的文献求助10
42秒前
43秒前
hhh完成签到,获得积分10
44秒前
45秒前
十三完成签到 ,获得积分10
47秒前
CHENZHIHUA完成签到,获得积分20
47秒前
dennisysz发布了新的文献求助10
48秒前
玉灵子发布了新的文献求助10
52秒前
ziji驳回了Akim应助
53秒前
小露完成签到,获得积分10
54秒前
淡淡半莲完成签到 ,获得积分10
55秒前
1111应助mingpu采纳,获得10
56秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 3000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3777414
求助须知:如何正确求助?哪些是违规求助? 3322767
关于积分的说明 10211585
捐赠科研通 3038128
什么是DOI,文献DOI怎么找? 1667131
邀请新用户注册赠送积分活动 797971
科研通“疑难数据库(出版商)”最低求助积分说明 758103