亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

DHAN: Encrypted JPEG image retrieval via DCT histograms-based attention networks

计算机科学 加密 离散余弦变换 人工智能 上传 JPEG格式 计算机视觉 卷积神经网络 模式识别(心理学) 图像(数学) 计算机网络 操作系统
作者
Qihua Feng,Peiya Li,Zhixun Lu,Zhibo Zhou,Yongdong Wu,Jian Weng,Feiran Huang
出处
期刊:Applied Soft Computing [Elsevier BV]
卷期号:133: 109935-109935 被引量:10
标识
DOI:10.1016/j.asoc.2022.109935
摘要

In image retrieval, the images to be retrieved are stored on remote servers. Since the images contain amounts of privacy information and the server cannot be fully trusted, people usually encrypt their images before uploading them to the server, which raises the demand for encrypted image retrieval (EIR). Current EIR techniques extract ruled hand-craft features from cipher images first and then build retrieval models (e.g., support vector machine, SVM) by these features, or use deep learning models (e.g., Convolutional Neural Network, CNN) to learn cipher-image representations in an end-to-end manner. However, SVM is not skilled at learning non-linear embedding in complex image database, and end-to-end EIR leads to low image security or retrieval performance because CNN is sensitive to extreme chaotic cipher images. Not-end-to-end EIR offers excellent encryption performance, and deep learning can further mine non-linear embedding from ruled hand-craft features. To this end, we propose a novel EIR scheme, named discrete cosine transform (DCT) Histograms-based Attention Networks (DHAN), which is based on deep learning to enhance expression ability of cipher-image in a not-end-to-end manner. Specifically, the DCT coefficients of images are encrypted by value replacement and block permutation encryption, and then the effective histogram features of DCT coefficients are extracted from the cipher images since the sets of DCT frequency in encrypted images are similar to that of plain images. After that, to dynamically learn the salient features of cipher images, we propose a new module named ResAttention and design deep attention networks to provide retrieval. Extensive experiments on two datasets demonstrate that DHAN not only provides high image security but also greatly improves retrieval performance than that of existing schemes.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
褚幻香完成签到 ,获得积分0
刚刚
刚刚
学术大拿完成签到,获得积分10
1秒前
bbbbb完成签到,获得积分10
6秒前
lyyt完成签到,获得积分10
6秒前
7秒前
9秒前
Monicamo发布了新的文献求助10
10秒前
脑洞疼应助马帅帅采纳,获得10
11秒前
18秒前
猜不猜不完成签到 ,获得积分10
22秒前
27秒前
30秒前
31秒前
Adel完成签到 ,获得积分10
32秒前
yueyue发布了新的文献求助10
35秒前
ovo发布了新的文献求助10
35秒前
Billy发布了新的文献求助10
39秒前
41秒前
HongqiZhang完成签到 ,获得积分10
41秒前
大个应助科研通管家采纳,获得10
45秒前
斯寜应助科研通管家采纳,获得10
45秒前
斯寜应助科研通管家采纳,获得10
45秒前
学术大拿发布了新的文献求助10
46秒前
48秒前
科研通AI5应助Evan采纳,获得10
48秒前
52秒前
1分钟前
打打应助浪里白条采纳,获得10
1分钟前
1分钟前
MMMMMeng完成签到,获得积分10
1分钟前
1分钟前
1分钟前
Evan发布了新的文献求助10
1分钟前
马帅帅发布了新的文献求助10
1分钟前
1分钟前
wanci应助lixiaoxia采纳,获得30
1分钟前
隐形的绮山关注了科研通微信公众号
1分钟前
丘比特应助三岁会刺猹采纳,获得10
1分钟前
1分钟前
高分求助中
Mass producing individuality 600
Algorithmic Mathematics in Machine Learning 500
Разработка метода ускоренного контроля качества электрохромных устройств 500
A Combined Chronic Toxicity and Carcinogenicity Study of ε-Polylysine in the Rat 400
Advances in Underwater Acoustics, Structural Acoustics, and Computational Methodologies 300
NK Cell Receptors: Advances in Cell Biology and Immunology by Colton Williams (Editor) 200
Effect of clapping movement with groove rhythm on executive function: focusing on audiomotor entrainment 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3827166
求助须知:如何正确求助?哪些是违规求助? 3369503
关于积分的说明 10456429
捐赠科研通 3089256
什么是DOI,文献DOI怎么找? 1699723
邀请新用户注册赠送积分活动 817497
科研通“疑难数据库(出版商)”最低求助积分说明 770251