Predicting total organic carbon from well logs based on deep spatial-sequential graph convolutional network

卷积神经网络 计算机科学 图形 概化理论 深度学习 领域(数学) 总有机碳 数据挖掘 特征(语言学) 模式识别(心理学) 人工智能 理论计算机科学 数学 统计 语言学 哲学 纯数学 生态学 生物
作者
Xiaocai Shan,Zhangxin Chen,Bo-Ye Fu,Wang Zhang,Jing Li,Keliu Wu
出处
期刊:Geophysics [Society of Exploration Geophysicists]
卷期号:88 (3): D193-D206 被引量:2
标识
DOI:10.1190/geo2022-0324.1
摘要

The total organic carbon (TOC) is a key geologic parameter for unconventional reservoirs. Conventional empirical [Formula: see text] methods cannot handle the nonlinear relationships between the characteristics of TOC and its well-log responses. Increased data availability has the potential to speed up deep learning applications, which can reasonably propagate the integrated information from well logs to indirectly observable geologic properties, such as TOC. Although the existing convolutional neural network (CNN) has found superior performance to [Formula: see text] for predicting TOC, CNNs feature-learning capability is still constrained by the fact that it can only extract log-specific sequential features of the input logs. However, the cross-log topological association features are potentially essential for the nonlinear mapping between well logs and TOC. Thus, we introduce a novel deep spatial-sequential graph convolutional network (SSGCN) for predicting the TOC by jointly leveraging the cross-log topological association features and log-specific sequential features. Through further use of the previously unaccounted topological interactions, our SSGCN dramatically outperforms the sequence-based CNN. In the southeast Sichuan Basin, SSGCN exhibits beneficial mapping not demonstrated previously: its models achieve a better cross-validation performance within the same gas field wells and a greater generalizability in another gas field well. Our SSGCN method can predict TOC of shale gas field well with the best [Formula: see text] being 0.87 within 1 s on the CPU of a desktop computer, which increases the efficiency of obtaining the TOC parameter. From this study, we recommend graph and sequential convolutions for designing deep learning architectures in the well-log analysis.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
旺仔完成签到 ,获得积分10
2秒前
满意草丛完成签到,获得积分10
3秒前
3秒前
大个应助drchen采纳,获得10
3秒前
欸嘿完成签到,获得积分10
5秒前
5秒前
cc发布了新的文献求助10
6秒前
7秒前
caia发布了新的文献求助10
7秒前
runtang发布了新的文献求助200
7秒前
8秒前
受伤问凝完成签到 ,获得积分10
9秒前
彩色铅笔完成签到,获得积分10
11秒前
明芬发布了新的文献求助10
12秒前
DQ发布了新的文献求助10
12秒前
在水一方应助maqedd采纳,获得10
12秒前
sfliufighting发布了新的文献求助10
12秒前
无语的钢铁侠完成签到,获得积分10
12秒前
12秒前
Rae发布了新的文献求助40
12秒前
12秒前
啦啦啦完成签到,获得积分20
14秒前
15秒前
15秒前
15秒前
欸嘿发布了新的文献求助10
17秒前
18秒前
Andy完成签到,获得积分10
19秒前
19秒前
赵亚南发布了新的文献求助10
19秒前
哇哦发布了新的文献求助10
20秒前
研友_8R716L发布了新的文献求助10
21秒前
甜美香之完成签到 ,获得积分10
22秒前
23秒前
24秒前
rtx00发布了新的文献求助10
24秒前
FashionBoy应助modechun采纳,获得30
25秒前
田様应助yourbigdaddy采纳,获得10
25秒前
zzw完成签到,获得积分10
26秒前
暮光之城完成签到,获得积分10
28秒前
高分求助中
(禁止应助)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Semantics for Latin: An Introduction 1099
Robot-supported joining of reinforcement textiles with one-sided sewing heads 780
A Student's Guide to Developmental Psychology 600
Stem Cells: Scientific Facts and Fiction 3rd Edition 500
水稻光合CO2浓缩机制的创建及其作用研究 500
Logical form: From GB to Minimalism 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4158022
求助须知:如何正确求助?哪些是违规求助? 3693745
关于积分的说明 11664531
捐赠科研通 3385037
什么是DOI,文献DOI怎么找? 1856871
邀请新用户注册赠送积分活动 918086
科研通“疑难数据库(出版商)”最低求助积分说明 831344