生物
基因敲除
家蚕
基因
细胞生物学
家蚕
转录因子
细胞质
Wnt信号通路
转录组
功能(生物学)
胚胎干细胞
基因表达
遗传学
作者
Shuai‐Qi Liu,Shunze Jia,Huan Tian,Yinghui Li,Kai‐Wen Hu,Jian‐Guo Tao,Yi‐Cheng Lu,Yusong Xu,Huabing Wang
摘要
Abstract N6‐methyladenosine (m6A) plays a key role in many biological processes. However, the function and evolutionary relationship of m6A‐related genes in insects remain largely unknown. Here we analysed the phylogeny of m6A‐related genes among 207 insect species and found that m6A‐related genes are evolutionarily conserved in insects. Subcellular localization experiments of m6A‐related proteins in BmN cells confirmed that BmYTHDF3 was localized in the cytoplasm, BmMETTL3, BmMETTL14, and BmYTHDC were localized in the nucleus, and FL2D was localized to both the nucleus and cytoplasm. We examined the expression patterns of m6A‐related genes during the embryonic development of Bombyx mori . To elucidate the function of BmMETTL3 during the embryonic stage, RNA sequencing was performed to measure changes in gene expression in silkworm eggs after BmMETTL3 knockdown, as well as in BmN cells overexpressing BmMETTL3 . The global transcriptional pattern showed that knockdown of BmMETTL3 affected multiple cellular processes, including oxidoreductase activity, transcription regulator activity, and the cation binding. In addition, transcriptomic data revealed that many observed DEGs were associated with fundamental metabolic processes, including carbon metabolism, purine metabolism, amino acid biosynthesis, and the citrate cycle. Interestingly, we found that knockdown of BmMETTL3 significantly affected Wnt and Toll/Imd pathways in embryos. Taken together, these results suggest that BmMETTL3 plays an essential role in the embryonic development of B. mori , and deepen our understanding of the function of m6A‐related genes in insects.
科研通智能强力驱动
Strongly Powered by AbleSci AI