Automated recognition of objects and types of forceps in surgical images using deep learning

镊子 计算机科学 人工智能 卷积神经网络 手术器械 计算机视觉 模式识别(心理学) 外科 医学
作者
Yoshiko Bamba,Shimpei Ogawa,Michio Itabashi,Shingo Kameoka,Takahiro Okamoto,Masakazu Yamamoto
出处
期刊:Scientific Reports [Nature Portfolio]
卷期号:11 (1) 被引量:10
标识
DOI:10.1038/s41598-021-01911-1
摘要

Analysis of operative data with convolutional neural networks (CNNs) is expected to improve the knowledge and professional skills of surgeons. Identification of objects in videos recorded during surgery can be used for surgical skill assessment and surgical navigation. The objectives of this study were to recognize objects and types of forceps in surgical videos acquired during colorectal surgeries and evaluate detection accuracy. Images (n = 1818) were extracted from 11 surgical videos for model training, and another 500 images were extracted from 6 additional videos for validation. The following 5 types of forceps were selected for annotation: ultrasonic scalpel, grasping, clip, angled (Maryland and right-angled), and spatula. IBM Visual Insights software was used, which incorporates the most popular open-source deep-learning CNN frameworks. In total, 1039/1062 (97.8%) forceps were correctly identified among 500 test images. Calculated recall and precision values were as follows: grasping forceps, 98.1% and 98.0%; ultrasonic scalpel, 99.4% and 93.9%; clip forceps, 96.2% and 92.7%; angled forceps, 94.9% and 100%; and spatula forceps, 98.1% and 94.5%, respectively. Forceps recognition can be achieved with high accuracy using deep-learning models, providing the opportunity to evaluate how forceps are used in various operations.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
茶送白粥应助科研通管家采纳,获得30
刚刚
顾矜应助科研通管家采纳,获得10
1秒前
wy.he应助科研通管家采纳,获得10
1秒前
烟花应助科研通管家采纳,获得10
1秒前
1秒前
1秒前
1秒前
1秒前
1秒前
Owen应助科研通管家采纳,获得10
1秒前
1秒前
1秒前
1秒前
1秒前
云襄发布了新的文献求助10
1秒前
1秒前
1秒前
2秒前
2秒前
3秒前
3秒前
4秒前
5秒前
lizzy发布了新的文献求助10
5秒前
5秒前
SYLH应助li采纳,获得10
6秒前
深情安青应助桀桀桀采纳,获得10
6秒前
在水一方应助三新荞采纳,获得10
6秒前
一一完成签到,获得积分10
7秒前
ziyue发布了新的文献求助10
7秒前
传奇3应助kma采纳,获得10
7秒前
昏睡的蟠桃应助小任吃不胖采纳,获得150
7秒前
烦恼的寂寞完成签到,获得积分10
7秒前
科研通AI5应助Wuwuwu采纳,获得10
7秒前
8秒前
仙女完成签到 ,获得积分10
8秒前
8秒前
8秒前
8秒前
D1fficulty发布了新的文献求助30
8秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Picture Books with Same-sex Parented Families: Unintentional Censorship 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 360
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3970949
求助须知:如何正确求助?哪些是违规求助? 3515634
关于积分的说明 11179061
捐赠科研通 3250769
什么是DOI,文献DOI怎么找? 1795474
邀请新用户注册赠送积分活动 875831
科研通“疑难数据库(出版商)”最低求助积分说明 805188