Hyperspectral Target Detection with an Auxiliary Generative Adversarial Network

高光谱成像 计算机科学 人工智能 鉴别器 分类器(UML) 模式识别(心理学) 稳健性(进化) 生成语法 生成对抗网络 对抗制 人工神经网络 机器学习 深度学习 探测器 基因 电信 生物化学 化学
作者
Yanlong Gao,Yan Feng,Xumin Yu
出处
期刊:Remote Sensing [Multidisciplinary Digital Publishing Institute]
卷期号:13 (21): 4454-4454 被引量:27
标识
DOI:10.3390/rs13214454
摘要

In recent years, the deep neural network has shown a strong presence in classification tasks and its effectiveness has been well proved. However, the framework of DNN usually requires a large number of samples. Compared to the training sets in classification tasks, the training sets for the target detection of hyperspectral images may only include a few target spectra which are quite limited and precious. The insufficient labeled samples make the DNN-based hyperspectral target detection task a challenging problem. To address this problem, we propose a hyperspectral target detection approach with an auxiliary generative adversarial network. Specifically, the training set is first expanded by generating simulated target spectra and background spectra using the generative adversarial network. Then, a classifier which is highly associated with the discriminator of the generative adversarial network is trained based on the real and the generated spectra. Finally, in order to further suppress the background, guided filters are utilized to improve the smoothness and robustness of the detection results. Experiments conducted on real hyperspectral images show the proposed approach is able to perform more efficiently and accurately compared to other target detection approaches.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Pt发布了新的文献求助10
1秒前
小小黑3b发布了新的文献求助10
1秒前
健壮的尔烟完成签到,获得积分10
3秒前
tutu完成签到,获得积分10
3秒前
4秒前
杜祖盛发布了新的文献求助10
5秒前
wzzhhh发布了新的文献求助10
7秒前
娇气的若冰完成签到,获得积分10
9秒前
Function发布了新的文献求助10
10秒前
科研通AI6应助杜祖盛采纳,获得10
10秒前
10秒前
Orange应助llulul采纳,获得10
11秒前
若水完成签到,获得积分10
11秒前
Orange应助wzzhhh采纳,获得10
12秒前
领导范儿应助二十三点一采纳,获得10
12秒前
13秒前
任性半鬼完成签到 ,获得积分10
13秒前
DK_fish发布了新的文献求助10
14秒前
15秒前
舒心的凝莲应助nnnnnnxh采纳,获得10
16秒前
17秒前
18秒前
领导范儿应助iidae采纳,获得10
19秒前
无明怀雪发布了新的文献求助10
19秒前
19秒前
22秒前
22秒前
DK_fish完成签到,获得积分10
22秒前
23秒前
26秒前
Ava应助GGGG采纳,获得20
27秒前
27秒前
bkagyin应助Function采纳,获得10
29秒前
wzzhhh完成签到,获得积分20
29秒前
科研通AI6应助下次见采纳,获得10
30秒前
张张发布了新的文献求助20
30秒前
30秒前
TIan发布了新的文献求助10
31秒前
鸢尾发布了新的文献求助10
32秒前
冬日夏岸完成签到,获得积分10
33秒前
高分求助中
(应助此贴封号)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
F-35B V2.0 How to build Kitty Hawk's F-35B Version 2.0 Model 2500
줄기세포 생물학 1000
The Netter Collection of Medical Illustrations: Digestive System, Volume 9, Part III - Liver, Biliary Tract, and Pancreas (3rd Edition) 600
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
2025-2031全球及中国蛋黄lgY抗体行业研究及十五五规划分析报告(2025-2031 Global and China Chicken lgY Antibody Industry Research and 15th Five Year Plan Analysis Report) 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4496667
求助须知:如何正确求助?哪些是违规求助? 3948362
关于积分的说明 12242300
捐赠科研通 3605996
什么是DOI,文献DOI怎么找? 1983723
邀请新用户注册赠送积分活动 1020167
科研通“疑难数据库(出版商)”最低求助积分说明 912636