材料科学
极限抗拉强度
冶金
硬化(计算)
热轧
复合材料
图层(电子)
作者
Emilio Bassini,Antonio Sivo,Daniele Ugues
出处
期刊:Materials
[Multidisciplinary Digital Publishing Institute]
日期:2021-11-04
卷期号:14 (21): 6662-6662
被引量:10
摘要
The automotive field is continuously researching safer, high-strength, ductile materials. Nowadays, dual-phase (DP) steels are gaining importance, since they meet all these requirements. Dual-phase steel made of ferrite and bainite is the object of a complete microstructural and mechanical characterization, which includes tensile and bending tests. This specific steel contains ferrite and bainite in equal parts; ferrite is the soft phase while bainite acts as a dispersed reinforcing system. This peculiar microstructure, together with fine dispersed carbides, an extremely low carbon content (0.09 wt%), and a minimal degree of strain hardening (less than 10%) allow this steel to compete with traditional medium-carbon single-phase steels. In this work, a full pearlitic C67 steel containing 0.67% carbon was used as a benchmark to build a comparative study between the DP and SP steels. Moreover, the Crussard–Jaoul (C-J) and Voce analysis were adopted to describe the hardening behavior of the two materials. Using the C-J analysis, it is possible to separately analyze the ferrite and bainite strain hardening and understand which alterations occur to DP steel after being cold rolled. On the other hand, the Voce equation was used to evaluate the dislocation density evolution as a function of the material state.
科研通智能强力驱动
Strongly Powered by AbleSci AI