Design and optimization of extractive distillation of benzene–n‐propanol with ionic liquid as entrainer

萃取蒸馏 化学 共沸蒸馏 共沸物 离子液体 分离过程 蒸馏 热力学 有机化学 工艺工程 色谱法 催化作用 物理 工程类
作者
Wenxiu Li,Lida Wang,Yu Zhang,Huisheng Feng,Hongfan Guo,Tao Zhang
出处
期刊:Journal of Chemical Technology & Biotechnology [Wiley]
卷期号:97 (1): 299-311 被引量:5
标识
DOI:10.1002/jctb.6942
摘要

Abstract BACKGROUND The binary benzene– n ‐propanol azeotrope can be formed in chemical production. Extractive distillation is an important azeotrope separation technology and an ionic liquid is a type of excellent entrainer. Aspen Plus software was used to simulate the extractive distillation process. The separation performance of ionic liquids was evaluated in terms of total annual cost of the extractive distillation process. The separation mechanism of the azeotrope was quantitatively explained using intermolecular interaction energy. RESULTS The thermodynamic properties databases of 1‐octyl‐3‐methylimidazolium acetate, trioctylmethylammonium acetate and 1‐decyl‐3‐methylimidazolium acetate were established in Aspen Plus software. The extractive distillation process was established through combining the thermodynamic properties of the three ionic liquids and the vapor–liquid equilibrium data of benzene– n ‐propanol–ionic liquid. The optimal operating conditions were obtained by minimizing the total annual cost of the separation process through a sequential iterative method. The interaction energy was calculated using density functional theory through Gaussian 09 software and used to explain the principle of the benzene– n ‐propanol azeotropic system separation. CONCLUSIONS 1‐Octyl‐3‐methylimidazolium acetate has the best separation performance among the three ionic liquids. The interaction energy can be used to screen and design ionic liquids in the process of benzene– n ‐propanol extractive distillation separation. © 2021 Society of Chemical Industry (SCI).
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Owen应助眼睛大白梦采纳,获得10
2秒前
丘比特应助舒心的芝麻采纳,获得10
3秒前
4秒前
5秒前
5秒前
5秒前
aeiou完成签到,获得积分10
6秒前
quhayley应助丹丹采纳,获得10
6秒前
6秒前
共享精神应助甜槠猪采纳,获得10
6秒前
7秒前
8秒前
123完成签到,获得积分10
10秒前
不不乐发布了新的文献求助10
10秒前
11秒前
SOLOMON应助小张张采纳,获得10
11秒前
11秒前
11秒前
yjjh完成签到 ,获得积分10
11秒前
12秒前
毅力发布了新的文献求助10
13秒前
tcm完成签到,获得积分10
13秒前
Rainy完成签到 ,获得积分10
16秒前
16秒前
优雅灵波完成签到,获得积分10
16秒前
17秒前
小星星bulingbuling完成签到,获得积分10
17秒前
英姑应助军军问问张采纳,获得10
18秒前
19秒前
21秒前
满满啊完成签到,获得积分10
21秒前
不不乐完成签到,获得积分10
22秒前
海风发布了新的文献求助20
22秒前
文艺易蓉完成签到,获得积分10
23秒前
23秒前
丹丹完成签到,获得积分10
24秒前
梦亦非完成签到 ,获得积分10
25秒前
@∞完成签到 ,获得积分10
25秒前
26秒前
书篆完成签到,获得积分10
26秒前
高分求助中
One Man Talking: Selected Essays of Shao Xunmei, 1929–1939 1000
Yuwu Song, Biographical Dictionary of the People's Republic of China 700
[Lambert-Eaton syndrome without calcium channel autoantibodies] 520
少脉山油柑叶的化学成分研究 430
Lung resection for non-small cell lung cancer after prophylactic coronary angioplasty and stenting: short- and long-term results 400
Revolutions 400
Diffusion in Solids: Key Topics in Materials Science and Engineering 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 有机化学 工程类 生物化学 纳米技术 物理 内科学 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 电极 光电子学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 2452383
求助须知:如何正确求助?哪些是违规求助? 2124997
关于积分的说明 5409899
捐赠科研通 1853897
什么是DOI,文献DOI怎么找? 922036
版权声明 562273
科研通“疑难数据库(出版商)”最低求助积分说明 493276