Graph-based stock correlation and prediction for high-frequency trading systems

计算机科学 加权 文件夹 计量经济学 交易策略 库存(枪支) 股票市场 图形 人工智能 经济 金融经济学 理论计算机科学 机械工程 古生物学 生物 工程类 医学 放射科
作者
Tao Yin,Chenzhengyi Liu,Fangyu Ding,Zi‐Ming Feng,Bo Yuan,Ning Zhang
出处
期刊:Pattern Recognition [Elsevier BV]
卷期号:122: 108209-108209 被引量:52
标识
DOI:10.1016/j.patcog.2021.108209
摘要

In this paper, we have implemented a high-frequency quantitative system that can obtain stable returns for the Chinese A-share market, which has been running for more than 3 months (from March 27, 2020 to June 30, 2020) with the expected results. A number of rules and barriers exist in the Chinese A-share market such as trading restrictions and high fees, as well as scarce and expensive hedging tools. It is difficult to achieve stable absolute returns in such a market. Stock correlation analysis and price prediction play an important role to achieve any profitable trading. The portfolio management and subsequent trading decisions highly depend on the results of stock correlation analysis and price prediction. However, it is nontrivial to analyze and predict any stocks, being time-varying and affected by unlimited factors in a given market. Traditional methods only take some certain factors into consideration but ignore others that may be changed dynamically. In this paper, we propose a novel machine learning model named Graph Attention Long Short-Term Memory (GALSTM) to learn the correlations between stocks and predict their future prices automatically. First, a multi-Hawkes Process is used to initial a correlation graph between stocks. This procedure provides a good training start as the multi-Hawkes Processes will be studied on the most saint feature fluctuations with any correlations being statistically significant. Then an attention-based LSTM is built to learn the weighting matrix underlying the dynamic graph. In addition, we also build matching data process plus portfolio management modules to form a complete system. The proposed GALSTM enables us to expand the scope of stock selection under the premise of controlling risks with limited hedging tools in the A-share market, thereby effectively increasing high-frequency excess returns. We then construct a long and short positions combination, select long positions in the A shares of the entire market, and use stock index futures to short. With GALSTM model, the products managed by our fully automatic quantitative trading system achieved an absolute annual return rate of 44.71% and the standard deviation of daily returns is only 0.42% in three months of operation. Only 1 week loss in 13 weeks of running time.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
顺心的夏菡完成签到,获得积分20
1秒前
李健的粉丝团团长应助sisi采纳,获得10
1秒前
2秒前
Robertchen完成签到,获得积分0
3秒前
洁白的故人完成签到 ,获得积分10
3秒前
3秒前
4秒前
爆米花应助热心小松鼠采纳,获得10
4秒前
我是老大应助热心小松鼠采纳,获得10
4秒前
小二郎应助热心小松鼠采纳,获得10
4秒前
Jasper应助热心小松鼠采纳,获得10
4秒前
4秒前
丘比特应助热心小松鼠采纳,获得10
4秒前
NexusExplorer应助热心小松鼠采纳,获得10
4秒前
NexusExplorer应助热心小松鼠采纳,获得10
4秒前
情怀应助热心小松鼠采纳,获得10
4秒前
我是老大应助热心小松鼠采纳,获得10
4秒前
lu完成签到,获得积分10
5秒前
别不开星完成签到,获得积分10
6秒前
Jeffreyzhong发布了新的文献求助10
7秒前
xiao茗发布了新的文献求助10
8秒前
华仔应助王森采纳,获得10
8秒前
哒哒李完成签到,获得积分10
8秒前
8秒前
Tina应助科研通管家采纳,获得30
9秒前
爆米花应助科研通管家采纳,获得10
9秒前
香蕉觅云应助科研通管家采纳,获得30
9秒前
贾克斯完成签到,获得积分20
9秒前
Hello应助科研通管家采纳,获得10
9秒前
Hello应助科研通管家采纳,获得10
9秒前
传奇3应助科研通管家采纳,获得10
9秒前
9秒前
CR7应助科研通管家采纳,获得20
9秒前
houyajun应助科研通管家采纳,获得10
9秒前
9秒前
香蕉觅云应助科研通管家采纳,获得10
9秒前
10秒前
10秒前
小蘑菇应助科研通管家采纳,获得10
10秒前
10秒前
高分求助中
【重要!!请各位用户详细阅读此贴】科研通的精品贴汇总(请勿应助) 10000
International Code of Nomenclature for algae, fungi, and plants (Madrid Code) (Regnum Vegetabile) 1000
Semantics for Latin: An Introduction 999
Robot-supported joining of reinforcement textiles with one-sided sewing heads 530
Apiaceae Himalayenses. 2 500
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 490
Tasteful Old Age:The Identity of the Aged Middle-Class, Nursing Home Tours, and Marketized Eldercare in China 350
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4084267
求助须知:如何正确求助?哪些是违规求助? 3623452
关于积分的说明 11494397
捐赠科研通 3337868
什么是DOI,文献DOI怎么找? 1835067
邀请新用户注册赠送积分活动 903677
科研通“疑难数据库(出版商)”最低求助积分说明 821848