Evaluation of super-resolution on 50 pancreatic cancer patients with real-time cine MRI from 0.35T MRgRT

核医学 人工智能 图像分辨率 图像质量 像素 计算机科学 计算机视觉 矢状面 医学 图像(数学) 放射科
作者
Jaehee Chun,Benjamin Lewis,Zhen Ji,Jaeik Shin,Justin C. Park,Jin Sung Kim,Taeho Kim
出处
期刊:Biomedical Physics & Engineering Express [IOP Publishing]
卷期号:7 (5): 055020-055020 被引量:7
标识
DOI:10.1088/2057-1976/ac1c51
摘要

MR-guided radiotherapy (MRgRT) systems provide excellent soft tissue imaging immediately prior to and in real time during radiation delivery for cancer treatment. However, 2D cine MRI often has limited spatial resolution due to high temporal resolution. This work applies a super resolution machine learning framework to 3.5 mm pixel edge length, low resolution (LR), sagittal 2D cine MRI images acquired on a MRgRT system to generate 0.9 mm pixel edge length, super resolution (SR), images originally acquired at 4 frames per second (FPS). LR images were collected from 50 pancreatic cancer patients treated on a ViewRay MR-LINAC. SR images were evaluated using three methods. 1) The first method utilized intrinsic image quality metrics for evaluation. 2) The second used relative metrics including edge detection and structural similarity index (SSIM). 3) Finally, automatically generated tumor contours were created on both low resolution and super resolution images to evaluate target delineation and compared with DICE and SSIM. Intrinsic image quality metrics all had statistically significant improvements for SR images versus LR images, with mean (±1 SD) BRISQUE scores of 29.65 ± 2.98 and 42.48 ± 0.98 for SR and LR, respectively. SR images showed good agreement with LR images in SSIM evaluation, indicating there was not significant distortion of the images. Comparison of LR and SR images with paired high resolution (HR) 3D images showed that SR images had a mean (±1 SD) SSIM value of 0.633 ± 0.063 and LR a value of 0.587 ± 0.067 (p ≪ 0.05). Contours generated on SR images were also more robust to noise addition than those generated on LR images. This study shows that super resolution with a machine learning framework can generate high spatial resolution images from 4fps low spatial resolution cine MRI acquired on the ViewRay MR-LINAC while maintaining tumor contour quality and without significant acquisition or post processing delay.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Leo完成签到,获得积分10
5秒前
研友_Lw7OvL完成签到 ,获得积分10
9秒前
9秒前
mengmenglv完成签到 ,获得积分0
10秒前
JHL完成签到 ,获得积分10
11秒前
科研通AI2S应助cyy1226采纳,获得10
14秒前
研友_西门孤晴完成签到,获得积分10
15秒前
平常破茧完成签到 ,获得积分10
17秒前
Jyy77完成签到 ,获得积分10
17秒前
changjun完成签到,获得积分10
27秒前
xiaxia42完成签到 ,获得积分10
28秒前
无私的朝雪完成签到 ,获得积分10
34秒前
37秒前
Lensin完成签到 ,获得积分10
40秒前
乐人完成签到 ,获得积分10
42秒前
xx完成签到 ,获得积分10
44秒前
was_3完成签到,获得积分10
49秒前
Yes0419完成签到,获得积分10
55秒前
陶醉书包完成签到 ,获得积分10
1分钟前
兔兔完成签到 ,获得积分10
1分钟前
哈哈呀完成签到 ,获得积分10
1分钟前
要笑cc完成签到,获得积分10
1分钟前
宣宣宣0733完成签到,获得积分10
1分钟前
1分钟前
胡质斌完成签到,获得积分10
1分钟前
eee应助hi_traffic采纳,获得10
1分钟前
1分钟前
cdercder应助科研通管家采纳,获得10
1分钟前
cdercder应助科研通管家采纳,获得10
1分钟前
1分钟前
wmuer完成签到 ,获得积分10
1分钟前
1分钟前
cyy1226发布了新的文献求助10
1分钟前
cyy1226完成签到,获得积分10
1分钟前
优雅的平安完成签到 ,获得积分10
1分钟前
奇博士完成签到,获得积分10
1分钟前
柒八染完成签到 ,获得积分10
1分钟前
淡淡菠萝完成签到 ,获得积分10
1分钟前
莎莎完成签到 ,获得积分10
1分钟前
AURORA丶完成签到 ,获得积分10
1分钟前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 3000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Mindfulness and Character Strengths: A Practitioner's Guide to MBSP 380
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3776037
求助须知:如何正确求助?哪些是违规求助? 3321559
关于积分的说明 10206330
捐赠科研通 3036657
什么是DOI,文献DOI怎么找? 1666435
邀请新用户注册赠送积分活动 797424
科研通“疑难数据库(出版商)”最低求助积分说明 757839