Modeling Context-aware Features for Cognitive Diagnosis in Student Learning

计算机科学 背景(考古学) 偏爱 人工智能 实施 认知 数学教育 心理学 程序设计语言 经济 微观经济学 古生物学 神经科学 生物
作者
Yuqiang Zhou,Qi Liu,Jinze Wu,Fei Wang,Zhenya Huang,Wei Tong,Hui Xiong,Enhong Chen,Jianhui Ma
出处
期刊:Knowledge Discovery and Data Mining 被引量:27
标识
DOI:10.1145/3447548.3467264
摘要

The contexts and cultures have a direct impact on student learning by affecting student's implicit cognitive states, such as the preference and the proficiency on specific knowledge. Motivated by the success of context-aware modeling in various fields, such as recommender systems, in this paper, we propose to study how to model context-aware features and adapt them for more precisely diagnosing student's knowledge proficiency. Specifically, by analyzing the characteristics of educational contexts, we design a two-stage framework ECD (Educational context-aware Cognitive Diagnosis), where a hierarchical attentive network is first proposed to represent the context impact on students and then an adaptive optimization is used to achieve diagnosis enhancement by aggregating the cognitive states reflected from both educational contexts and students' historical learning records. Moreover, we give three implementations of general ECD framework following the typical cognitive diagnosis solutions. Finally, we conduct extensive experiments on nearly 52 million records of the students sampled by PISA (Programme for International Student Assessment) from 73 countries and regions. The experimental results not only prove that ECD is more effective in student performance prediction since it can well capture the impact from educational contexts to students' cognitive states, but also give some interesting discoveries regarding the difference among different educational contexts in different countries and regions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
朴素绿真发布了新的文献求助10
2秒前
weiwei完成签到 ,获得积分10
2秒前
2秒前
xiaose完成签到,获得积分10
2秒前
包包酱完成签到,获得积分10
3秒前
4秒前
4秒前
IJT完成签到,获得积分10
5秒前
morry5007发布了新的文献求助10
5秒前
哒哒哒发布了新的文献求助10
5秒前
fh完成签到,获得积分20
5秒前
7秒前
LiuShenglan完成签到,获得积分10
7秒前
霸气的冰旋完成签到 ,获得积分10
7秒前
7秒前
8秒前
英姑应助李昕123采纳,获得10
8秒前
Li发布了新的文献求助10
8秒前
下雨天发布了新的文献求助10
9秒前
fh发布了新的文献求助10
9秒前
文与凯完成签到,获得积分20
10秒前
qianchimo完成签到 ,获得积分10
10秒前
邵邵发布了新的文献求助20
11秒前
李健应助森森采纳,获得10
11秒前
菲菲公主完成签到,获得积分10
11秒前
Akim应助火星上的听云采纳,获得10
11秒前
nwds发布了新的文献求助10
12秒前
舒心妙菱完成签到,获得积分10
12秒前
悦悦完成签到,获得积分10
13秒前
14秒前
司马含卉应助Joy采纳,获得10
14秒前
123w完成签到,获得积分20
14秒前
66完成签到,获得积分10
14秒前
cmu087204发布了新的文献求助10
15秒前
livresse完成签到,获得积分10
15秒前
喜悦香薇完成签到 ,获得积分10
15秒前
似我完成签到,获得积分10
15秒前
笑一笑完成签到,获得积分10
15秒前
NN123完成签到 ,获得积分10
15秒前
小苏打完成签到,获得积分10
16秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Technologies supporting mass customization of apparel: A pilot project 450
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
Brain and Heart The Triumphs and Struggles of a Pediatric Neurosurgeon 400
Cybersecurity Blueprint – Transitioning to Tech 400
Mixing the elements of mass customisation 400
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3785072
求助须知:如何正确求助?哪些是违规求助? 3330486
关于积分的说明 10246402
捐赠科研通 3045842
什么是DOI,文献DOI怎么找? 1671749
邀请新用户注册赠送积分活动 800814
科研通“疑难数据库(出版商)”最低求助积分说明 759665