数学
趋同(经济学)
分数阶微积分
空格(标点符号)
班级(哲学)
理论(学习稳定性)
订单(交换)
扩散
数学分析
数值分析
应用数学
语言学
哲学
物理
财务
机器学习
经济
热力学
经济增长
人工智能
计算机科学
作者
Wenyi Tian,Han Zhou,Weihua Deng
标识
DOI:10.1090/s0025-5718-2015-02917-2
摘要
A class of second order approximations, called the weighted and shifted Grünwald difference (WSGD) operators, are proposed for Riemann-Liouville fractional derivatives, with their effective applications to numerically solving space fractional diffusion equations in one and two dimensions. The stability and convergence of our difference schemes for space fractional diffusion equations with constant coefficients in one and two dimensions are theoretically established. Several numerical examples are implemented to test the efficiency of the numerical schemes and confirm the convergence order, and the numerical results for variable coefficients problem are also presented.
科研通智能强力驱动
Strongly Powered by AbleSci AI