已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Insights into the Thermo-Photo Catalytic Production of Hydrogen from Water on a Low-Cost NiOx-Loaded TiO2 Catalyst

催化作用 制氢 非阻塞I/O 材料科学 生产(经济) 化学工程 分解水 化学 光催化 有机化学 工程类 宏观经济学 经济
作者
Siyuan Fang,Zhuxing Sun,Yun Hang Hu
出处
期刊:ACS Catalysis 卷期号:9 (6): 5047-5056 被引量:91
标识
DOI:10.1021/acscatal.9b01110
摘要

Thermo-photo catalytic water splitting, where the introduction of thermal energy increases the oxidation driving force for narrow-band-gap photocatalysts (with a low valence band potential), exhibited significantly advanced performance for hydrogen production as compared to general water splitting at room temperature. Herein, a low-cost NiOx-loaded TiO2 catalyst was reported for thermo-photo catalytic water splitting with methanol as the sacrificial agent. The catalyst with an optimal Ni ratio of 5 wt % achieved a hydrogen evolution rate of 53.7 mmol/h/g under simulated AM 1.5G sunlight at 260 °C, which was 2.5 times more than that without illumination, with apparent quantum efficiencies of 66.24%, 33.55%, 32.52%, and 15.35% at 380, 420, 450, and 500 nm, respectively. More impressively, under the irradiation of visible light (λ > 420 nm) at this temperature, the photohydrogen yield could still reach 26.9 mmol/h/g, which was 5 orders of magnitude greater than that (0.0011 mmol/h/g) conducted at room temperature. Isotope tracer experiments demonstrated that the introduction of photoenergy promoted the hydrogen production mainly by enhancing hydrogen evolution from water splitting rather than methanol decomposition or reformation. Furthermore, the stepwise reaction mechanism was revealed with insights into the synergistic roles of thermo-energy and photoenergy for production of hydrogen from water. Those findings highlight the great promise of thermo-photo catalysis and should inspire more efforts for water splitting.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
CharlotteBlue应助heart采纳,获得30
1秒前
zheng123完成签到,获得积分20
3秒前
华仔应助bane.采纳,获得10
5秒前
5秒前
6秒前
完美世界应助Jy采纳,获得10
8秒前
ShengShuoX发布了新的文献求助10
9秒前
一只熊发布了新的文献求助10
10秒前
16秒前
16秒前
进无止尽完成签到,获得积分20
19秒前
22秒前
24秒前
烟花应助研友_5Y9775采纳,获得10
25秒前
25秒前
雪莉酒发布了新的文献求助30
29秒前
30秒前
在水一方应助研友_8YKmvn采纳,获得10
30秒前
30秒前
Jy发布了新的文献求助10
30秒前
李博士发布了新的文献求助30
30秒前
zheng123关注了科研通微信公众号
31秒前
斯文败类应助冷静的十八采纳,获得10
34秒前
34秒前
发财牛女发布了新的文献求助10
35秒前
37秒前
Jy完成签到,获得积分10
38秒前
坚定的小海豚完成签到,获得积分10
39秒前
852应助容容采纳,获得10
40秒前
45秒前
能干的盼海完成签到,获得积分20
47秒前
yashachen发布了新的文献求助10
50秒前
52秒前
sehungirlfriend完成签到 ,获得积分10
52秒前
若愚发布了新的文献求助30
53秒前
顾矜应助研友_ZlPNaZ采纳,获得10
53秒前
54秒前
54秒前
高分求助中
Thermodynamic data for steelmaking 3000
Manual of Clinical Microbiology, 4 Volume Set (ASM Books) 13th Edition 1000
Counseling With Immigrants, Refugees, and Their Families From Social Justice Perspectives pages 800
Electrochemistry 500
Statistical Procedures for the Medical Device Industry 400
藍からはじまる蛍光性トリプタンスリン研究 400
Cardiology: Board and Certification Review 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 有机化学 工程类 生物化学 纳米技术 物理 内科学 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 电极 光电子学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 2368062
求助须知:如何正确求助?哪些是违规求助? 2076917
关于积分的说明 5196603
捐赠科研通 1804010
什么是DOI,文献DOI怎么找? 900756
版权声明 558053
科研通“疑难数据库(出版商)”最低求助积分说明 480667