Latent Representation Learning for Alzheimer’s Disease Diagnosis With Incomplete Multi-Modality Neuroimaging and Genetic Data

人工智能 神经影像学 计算机科学 正电子发射断层摄影术 缺少数据 机器学习 磁共振成像 代表(政治) 模式识别(心理学) 稳健性(进化) 特征学习 模式 模态(人机交互) 医学 心理学 放射科 神经科学 基因 社会学 政治 化学 法学 生物化学 社会科学 政治学
作者
Tao Zhou,Mingxia Liu,Kim‐Han Thung,Dinggang Shen
出处
期刊:IEEE Transactions on Medical Imaging [Institute of Electrical and Electronics Engineers]
卷期号:38 (10): 2411-2422 被引量:149
标识
DOI:10.1109/tmi.2019.2913158
摘要

The fusion of complementary information contained in multi-modality data [e.g., magnetic resonance imaging (MRI), positron emission tomography (PET), and genetic data] has advanced the progress of automated Alzheimer's disease (AD) diagnosis. However, multi-modality based AD diagnostic models are often hindered by the missing data, i.e., not all the subjects have complete multi-modality data. One simple solution used by many previous studies is to discard samples with missing modalities. However, this significantly reduces the number of training samples, thus leading to a sub-optimal classification model. Furthermore, when building the classification model, most existing methods simply concatenate features from different modalities into a single feature vector without considering their underlying associations. As features from different modalities are often closely related (e.g., MRI and PET features are extracted from the same brain region), utilizing their inter-modality associations may improve the robustness of the diagnostic model. To this end, we propose a novel latent representation learning method for multi-modality based AD diagnosis. Specifically, we use all the available samples (including samples with incomplete modality data) to learn a latent representation space. Within this space, we not only use samples with complete multi-modality data to learn a common latent representation, but also use samples with incomplete multi-modality data to learn independent modality-specific latent representations. We then project the latent representations to the label space for AD diagnosis. We perform experiments using 737 subjects from the Alzheimer's Disease Neuroimaging Initiative (ADNI) database, and the experimental results verify the effectiveness of our proposed method.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
徐家豪完成签到 ,获得积分20
1秒前
丰富采波发布了新的文献求助10
4秒前
孤梦落雨完成签到,获得积分10
4秒前
8秒前
黎明暂缓完成签到,获得积分10
9秒前
丁真先生完成签到,获得积分10
9秒前
xdy应助胡新语采纳,获得10
10秒前
Army616完成签到,获得积分10
10秒前
宇文安寒完成签到,获得积分10
11秒前
可爱的函函应助认真学习采纳,获得10
13秒前
欣喜沛芹发布了新的文献求助10
15秒前
15秒前
夹心饼干完成签到 ,获得积分10
17秒前
领导范儿应助飞雨听澜采纳,获得10
18秒前
爆米花应助飞雨听澜采纳,获得10
18秒前
18秒前
18秒前
叫我读书仔完成签到 ,获得积分10
18秒前
19秒前
香蕉觅云应助丰富采波采纳,获得10
19秒前
20秒前
CY发布了新的文献求助10
20秒前
21秒前
可耐的香露完成签到,获得积分10
22秒前
24秒前
米米发布了新的文献求助10
24秒前
25秒前
Hello应助CY采纳,获得10
25秒前
25秒前
尼莫发布了新的文献求助10
26秒前
忧郁绿蝶完成签到,获得积分10
26秒前
认真学习发布了新的文献求助10
27秒前
29秒前
PCY发布了新的文献求助30
30秒前
孔令琦发布了新的文献求助10
32秒前
飞飞完成签到,获得积分10
32秒前
32秒前
cxm完成签到 ,获得积分10
32秒前
小二郎应助飞雨听澜采纳,获得10
34秒前
羊村村长发布了新的文献求助10
37秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Разработка метода ускоренного контроля качества электрохромных устройств 500
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
Epigenetic Drug Discovery 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3818644
求助须知:如何正确求助?哪些是违规求助? 3361692
关于积分的说明 10413776
捐赠科研通 3079904
什么是DOI,文献DOI怎么找? 1693544
邀请新用户注册赠送积分活动 814550
科研通“疑难数据库(出版商)”最低求助积分说明 768248