An Additive-Consistency- and Consensus-Based Approach for Uncertain Group Decision Making With Linguistic Preference Relations

一致性(知识库) 群体决策 成对比较 偏爱 一致性指数 一致性模型 计算机科学 弱一致性 数学 语言学 人工智能 强一致性 统计 心理学 算法 社会心理学 正确性 哲学 复合材料 估计员 材料科学 流变学
作者
Jing-Feng Tian,Zhiming Zhang,Ming-Hu Ha
出处
期刊:IEEE Transactions on Fuzzy Systems [Institute of Electrical and Electronics Engineers]
卷期号:27 (5): 873-887 被引量:43
标识
DOI:10.1109/tfuzz.2018.2865132
摘要

Linguistic preference relations (LPRs) can indicate the decision makers (DMs)' qualitative pairwise judgments regarding a set of alternatives in uncertain multicriteria decision-making problems. This paper examines several goal programming models for managing the additive consistency and consensus of LPRs and then develops an additive-consistency- and consensus-based method for group decision making (GDM) with LPRs. First, this paper offers a consistency index to quantify the consistency level for LPRs and define acceptable consistent LPRs. For an LPR that is unacceptably additive consistent, several additive-consistency-based programming models are developed to address the inconsistency and to establish an acceptably consistent LPR. Then, an additive-consistency-based procedure to generate the priority weight vector from the LPR is offered. An additive-consistency-based algorithm for decision making with an LPR is presented. Subsequently, considering the consensus in GDM, a consensus index is proposed for gauging the agreement degree among individual LPRs. Regarding individual LPRs that do not exhibit acceptably additive consistency or acceptable consensus, several goal programming models to derive new LPRs with acceptable consistency and consensus are provided. Afterward, the DMs' weights are determined objectively, and individual LPRs are integrated into a collective LPR. An additive-consistency- and consensus-based GDM method with a group of LPRs is developed. Finally, two practical numerical examples are offered, and a comparative analysis is presented.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
2秒前
5秒前
cwn完成签到 ,获得积分10
6秒前
YP_024发布了新的文献求助10
7秒前
carol完成签到,获得积分10
7秒前
taotao完成签到,获得积分10
10秒前
11秒前
VDC应助爱科研的佳慧采纳,获得30
13秒前
tulip完成签到,获得积分10
13秒前
所所应助眯眯眼的朋友采纳,获得10
16秒前
16秒前
18秒前
树袋熊完成签到,获得积分10
19秒前
20秒前
天明发布了新的文献求助30
21秒前
YP_024完成签到,获得积分10
26秒前
27秒前
郭n完成签到 ,获得积分10
29秒前
XRWei完成签到 ,获得积分10
30秒前
PG完成签到 ,获得积分10
30秒前
科研通AI5应助清晨采纳,获得30
30秒前
31秒前
赎罪完成签到 ,获得积分10
33秒前
n0rthstar完成签到,获得积分10
36秒前
42秒前
科研小白完成签到,获得积分10
43秒前
helloworld完成签到,获得积分10
44秒前
专注雨珍完成签到,获得积分10
44秒前
哈哈发布了新的文献求助10
45秒前
64658完成签到,获得积分10
48秒前
49秒前
solidcon发布了新的文献求助10
53秒前
54秒前
rui完成签到,获得积分10
54秒前
58秒前
59秒前
solidcon完成签到,获得积分20
1分钟前
1分钟前
1分钟前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Mixing the elements of mass customisation 300
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3777977
求助须知:如何正确求助?哪些是违规求助? 3323559
关于积分的说明 10214983
捐赠科研通 3038761
什么是DOI,文献DOI怎么找? 1667645
邀请新用户注册赠送积分活动 798276
科研通“疑难数据库(出版商)”最低求助积分说明 758315