Sandwich-like SnS2/Graphene/SnS2 with Expanded Interlayer Distance as High-Rate Lithium/Sodium-Ion Battery Anode Materials

石墨烯 材料科学 阳极 离子 锂(药物) 电池(电) 纳米技术 电极 物理 物理化学 热力学 化学 内分泌学 有机化学 冶金 功率(物理) 医学
作者
Yong Jiang,Daiyun Song,Juan Wu,Zhixuan Wang,Shoushuang Huang,Yi Xu,Zhiwen Chen,Bing Zhao,Jiujun Zhang
出处
期刊:ACS Nano [American Chemical Society]
卷期号:13 (8): 9100-9111 被引量:326
标识
DOI:10.1021/acsnano.9b03330
摘要

SnS2 materials have attracted broad attention in the field of electrochemical energy storage due to their layered structure with high specific capacity. However, the easy restacking property during charge/discharge cycling leads to electrode structure instability and a severe capacity decrease. In this paper, we report a simple one-step hydrothermal synthesis of SnS2/graphene/SnS2 (SnS2/rGO/SnS2) composite with ultrathin SnS2 nanosheets covalently decorated on both sides of reduced graphene oxide sheets via C-S bonds. Owing to the graphene sandwiched between two SnS2 sheets, the composite presents an enlarged interlayer spacing of ∼8.03 Å for SnS2, which could facilitate the insertion/extraction of Li+/Na+ ions with rapid transport kinetics as well as inhibit the restacking of SnS2 nanosheets during the charge/discharge cycling. The density functional theory calculation reveals the most stable state of the moderate interlayer spacing for the sandwich-like composite. The diffusion coefficients of Li/Na ions from both molecular simulation and experimental observation also demonstrate that this state is the most suitable for fast ion transport. In addition, numerous ultratiny SnS2 nanoparticles anchored on the graphene sheets can generate dominant pseudocapacitive contribution to the composite especially at large current density, guaranteeing its excellent high-rate performance with 844 and 765 mAh g-1 for Li/Na-ion batteries even at 10 A g-1. No distinct morphology changes occur after 200 cycles, and the SnS2 nanoparticles still recover to a pristine phase without distinct agglomeration, demonstrating that this composite with high-rate capabilities and excellent cycle stability are promising candidates for lithium/sodium storage.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
NexusExplorer应助tao采纳,获得10
刚刚
1秒前
善学以致用应助啦啦啦啦采纳,获得10
2秒前
彭于晏应助提提采纳,获得10
5秒前
量子星尘发布了新的文献求助10
6秒前
毛毛弟发布了新的文献求助10
8秒前
fffff完成签到,获得积分10
9秒前
xiaoxiao发布了新的文献求助10
11秒前
fffff发布了新的文献求助10
11秒前
15秒前
DrW1111发布了新的文献求助10
16秒前
16秒前
量子星尘发布了新的文献求助10
16秒前
情怀应助科研通管家采纳,获得10
16秒前
科研通AI6应助科研通管家采纳,获得10
16秒前
科研通AI6应助科研通管家采纳,获得10
16秒前
Orange应助科研通管家采纳,获得10
17秒前
乐乐应助科研通管家采纳,获得10
17秒前
FashionBoy应助科研通管家采纳,获得10
17秒前
传奇3应助科研通管家采纳,获得20
17秒前
17秒前
CAOHOU应助科研通管家采纳,获得10
17秒前
科研通AI6应助科研通管家采纳,获得10
17秒前
17秒前
moon完成签到,获得积分10
19秒前
巴哒发布了新的文献求助10
20秒前
illusion完成签到,获得积分10
20秒前
科研通AI6应助高强采纳,获得30
21秒前
hsialy发布了新的文献求助10
21秒前
cola发布了新的文献求助10
22秒前
彩色玲发布了新的文献求助10
23秒前
23秒前
陈皮发布了新的文献求助10
24秒前
26秒前
树风完成签到,获得积分10
26秒前
26秒前
叶夜南完成签到 ,获得积分10
26秒前
27秒前
vip668完成签到,获得积分10
27秒前
28秒前
高分求助中
Organic Chemistry 10086
(应助此贴封号)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Voyage au bout de la révolution: de Pékin à Sochaux 700
First Farmers: The Origins of Agricultural Societies, 2nd Edition 500
Single/synchronous adsorption of Cu(II), Cd(II) and Cr(VI) in water by layered double hydroxides doped with different divalent metals 400
Metals, Minerals, and Society 400
International socialism & Australian labour : the Left in Australia, 1919-1939 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4291141
求助须知:如何正确求助?哪些是违规求助? 3818305
关于积分的说明 11957331
捐赠科研通 3461777
什么是DOI,文献DOI怎么找? 1898733
邀请新用户注册赠送积分活动 947299
科研通“疑难数据库(出版商)”最低求助积分说明 850032