阳极
剥离(纤维)
电解质
材料科学
电流密度
功率密度
电流(流体)
限制电流
阴极
电镀(地质)
枝晶(数学)
电化学
电极
化学工程
复合材料
化学
热力学
功率(物理)
量子力学
物理
地质学
工程类
物理化学
数学
地球物理学
几何学
作者
Jitti Kasemchainan,Stefanie Zekoll,Dominic Spencer Jolly,Ziyang Ning,Gareth O. Hartley,T.J. Marrow,Peter G. Bruce
出处
期刊:Nature Materials
[Nature Portfolio]
日期:2019-07-29
卷期号:18 (10): 1105-1111
被引量:790
标识
DOI:10.1038/s41563-019-0438-9
摘要
A critical current density on stripping is identified that results in dendrite formation on plating and cell failure. When the stripping current density removes Li from the interface faster than it can be replenished, voids form in the Li at the interface and accumulate on cycling, increasing the local current density at the interface and ultimately leading to dendrite formation on plating, short circuit and cell death. This occurs even when the overall current density is considerably below the threshold for dendrite formation on plating. For the Li/Li6PS5Cl/Li cell, this is 0.2 and 1.0 mA cm−2 at 3 and 7 MPa pressure, respectively, compared with a critical current for plating of 2.0 mA cm−2 at both 3 and 7 MPa. The pressure dependence on stripping indicates that creep rather than Li diffusion is the dominant mechanism transporting Li to the interface. The critical stripping current is a major factor limiting the power density of Li anode solid-state cells. Considerable pressure may be required to achieve even modest power densities in solid-state cells. A ceramic electrolyte with a lithium metal anode can offer advantages over liquid electrolytes for Li-ion battery performance. A critical current density on stripping in a solid-state cell is identified, resulting in dendrite formation on plating and failure.
科研通智能强力驱动
Strongly Powered by AbleSci AI